1,187 research outputs found

    Genomic features of Bordetella parapertussis clades with distinct host species specificity

    Get PDF
    BACKGROUND: The respiratory pathogen Bordetella parapertussis is a valuable model in which to study the complex phenotype of host specificity because of its unique two-species host range. One subset of strains, including the sequenced representative, causes whooping cough in humans, while other strains infect only sheep. The disease process in sheep is not well understood, nor are the genetic and transcriptional differences that might provide the basis for host specificity among ovine and human strains. RESULTS: We found 40 previously unknown genomic regions in an ovine strain of B. parapertussis using subtractive hybridization, including unique lipopolysaccharide genes. A microarray survey of the gene contents of 71 human and ovine strains revealed further differences, with 47 regions of difference distinguishing the host-restricted subgroups. In addition, sheep and human strains displayed distinct whole-genome transcript abundance profiles. We developed an animal model in which sheep were inoculated with a sheep strain, human strain, or mixture of the two. We found that the ovine strain persisted in the nasal cavity for 12 to 14 days, while the human strain colonized at lower levels and was no longer detected by 7 days post-inoculation. The ovine strain induced less granulocyte infiltration of the nasal mucosa. CONCLUSION: Several factors may play a role in determining host range of B. parapertussis. Human- and ovine-associated strains have differences in content and sequence of genes encoding proteins that mediate host-pathogen contact, such as lipopolysaccharide and fimbriae, as well as variation in regulation of toxins, type III secretion genes, and other virulence-associated genes

    Particulate matter (PM) 2.5 levels in ETS emissions of a Marlboro Red cigarette in comparison to the 3R4F reference cigarette under open- and closed-door condition

    Get PDF
    Introduction: Potential health damage by environmental emission of tobacco smoke (environmental tobacco smoke, ETS) has been demonstrated convincingly in numerous studies. People, especially children, are still exposed to ETS in the small space of private cars. Although major amounts of toxic compounds from ETS are likely transported into the distal lung via particulate matter (PM), few studies have quantified the amount of PM in ETS. Study aim The aim of this study was to determine the ETS-dependent concentration of PM from both a 3R4F reference cigarette (RC) as well as a Marlboro Red brand cigarette (MRC) in a small enclosed space under different conditions of ventilation to model car exposure. Method: In order to create ETS reproducibly, an emitter (ETSE) was constructed and mounted on to an outdoor telephone booth with an inner volume of 1.75 m3. Cigarettes were smoked under open- and closed-door condition to imitate different ventilation scenarios. PM2.5 concentration was quantified by a laser aerosol spectrometer (Grimm; Model 1.109), and data were adjusted for baseline values. Simultaneously indoor and outdoor climate parameters were recorded. The time of smoking was divided into the ETS generation phase (subset "emission") and a declining phase of PM concentration (subset "elimination"); measurement was terminated after 10 min. For all three time periods the average concentration of PM2.5 (Cmean-PM2.5) and the area under the PM2.5 concentration curve (AUC-PM2.5) was calculated. The maximum concentration (Cmax-PM2.5) was taken from the total interval. Results: For both cigarette types open-door ventilation reduced the AUC-PM2.5 (RC: from 59 400 +/- 14 600 to 5 550 +/- 3 900 mug*sec/m3; MRC: from 86 500 +/- 32 000 to 7 300 +/- 2 400 mug*sec/m3; p < 0.001) and Cmean-PM2.5 (RC: from 600 +/- 150 to 56 +/- 40 mug/m3, MRC from 870 +/- 320 to 75 +/- 25 mug/m3; p < 0.001) by about 90%. Cmax-PM2.5 was reduced by about 80% (RC: from 1 050 +/- 230 to 185 +/- 125 mug/m3; MRC: from 1 560 +/-500 mug/m3 to 250 +/- 85 mug/m3; p < 0.001). In the subset "emission" we identified a 78% decrease in AUC-PM2.5 (RC: from 18 600 +/- 4 600 to 4 000 +/- 2 600 mug*sec/m3; MRC: from 26 600 +/- 7 200 to 5 800 +/- 1 700 mug*sec/m3; p < 0.001) and Cmean-PM2.5 (RC: from 430 +/- 108 to 93 +/- 60 mug/m3; MRC: from 620 +/- 170 to 134 +/- 40 mug/m3; p < 0.001). In the subset "elimination" we found a reduction of about 96-98% for AUC-PM2.5 (RC: from 40 800 +/- 11 100 to 1 500 +/- 1 700 mug*sec/m3; MRC: from 58 500 +/- 25 200 to 1 400 +/- 800 mug*sec/m3; p < 0.001) and Cmean-PM2.5 (RC: from 730 +/- 200 to 27 +/- 29 mug/m3; MRC: from 1 000 +/- 450 to 26 +/- 15 mug/m3; p < 0.001). Throughout the total interval Cmax-PM2.5 of MRC was about 50% higher (1 550 +/- 500 mug/m3) compared to RC (1 050 +/- 230 mug/m3; p < 0.05). For the subset "emission" - but not for the other periods - AUC-PM2.5 for MRC was 43% higher (MRC: 26 600 +/- 7 200 mug*sec/m3; RC: 18 600 +/- 4 600 mug*sec/m3; p < 0.05) and 44% higher for Cmean-PM2.5 (MRC: 620 +/- 170 mug/m3; RC: 430 +/- 108 mug/m3; p < 0.05). Conclusion: This method allows reliable quantification of PM2.5-ETS exposure under various conditions, and may be useful for ETS risk assessment in realistic exposure situations. The findings demonstrate that open-door condition does not completely remove ETS from a defined indoor space of 1.75 m3. Because there is no safe level of ETS exposure ventilation is not adequate enough to prevent ETS exposure in confined spaces, e.g. private cars. Additionally, differences in the characteristics of cigarettes affect the amount of ETS particle emission and need to be clarified by ongoing investigations

    A measuring instrument for the auditory perception of rooms: The Room Acoustical Quality Inventory (RAQI)

    Get PDF
    With the Room Acoustical Quality Inventory (RAQI), a measuring instrument for the perceptual space of performance venues for music and speech has been developed. First, a focus group with room acoustical experts determined relevant aspects of room acoustical impression in the form of a comprehensive list of 50 uni- and bipolar items in different categories. Then, n = 190 subjects rated their acoustical impression of 35 binaurally simulated rooms from 2 listening positions, with symphonic orchestra, solo trumpet, and dramatic speech as audio content. Subsequent explorative and confirmative factor analyses of the questionnaire data resulted in three possible solutions with four, six, and nine factors of room acoustical impression. The factor solutions, as well as the related RAQI items, were tested in terms of reliability, validity, and several types of measurement invariance, and were cross-validated by a follow-up experiment with a subsample of 46% of the original participants, which provided re-test reliabilities and stability coefficients for all RAQI constructs. The resulting psychometrically evaluated measurement instrument can be used for room quality assessment, acoustical planning, and the further development of room acoustical parameters in order to predict primary acoustical qualities of venues for music and speech.DFG, 174776315, FOR 1557: Simulation and Evaluation of Acoustical Environments (SEACEN

    A Database on Musicians’ Movements During Musical Performances

    Get PDF
    The movements of 20 musicians playing 11 different musical instruments, including all standard orchestral instruments, were captured during solo performances by means of a motion capturing system under concert-like conditions.DFG, FOR 1557, Simulation and Evaluation of Acoustical Environments (SEACEN

    Tonsil and Turbinate Colonization by Toxigenic and Nontoxigenic Strains of Pasteurella Multocida in Conventionally Raised Swine

    Get PDF
    Pneumonia and upper respiratory tract infections, such as atrophic rhinitis, are common and insidious diseases of swine. They are often considered causes of decreased rate of weight gain, inefficient feed conversion, and increased time to market, although these parameters do not absolutely correlate with the severity of lesions. Pasteurella multocida is associated with lower and upper respiratory infections, based on results of lung cultures at necropsy and cultures from swabs of the nasal cavity. In the lung, one study showed that nontoxigenic strains were most commonly isolated from acute to subacute pneumonic areas, and toxigenic strains were most commonly isolated from granulomas. In atrophic rhinitis, toxigenic strains are associated with severe, progressive turbinate atrophy. Experimentally, purified toxin induces turbinate atrophy when aerosolized into the nasal cavity or injected into the subcutis, muscle, or peritoneum

    Early Epithelial Invasion by Salmonella enterica Serovar Typhimurium DT104 in the Swine Ileum

    Get PDF
    Salmonella enterica serovar Typhimurium is an important intestinal pathogen in swine. This study was performed to document the early cellular invasion of Salmonellaserovar Typhimurium in swine ileum. Ileal gut-loops were surgically prepared in ten 4- to 5-week-old mixed-breed pigs and inoculated for 0-60 minutes. Loops were harvested and prepared for both scanning and transmission electron microscopy (SEM and TEM, respectively). Preferential bacterial adherence to microfold cells (M cells) was seen within 5 minutes, and by 10 minutes bacterial invasion of the apical membrane was seen in M cells, goblet cells, and enterocytes. This multicellular invasion was observed throughout the course of infection. In addition, SEM revealed a specific affinity of Salmonella serovar Typhimurium to sites of cell extrusion. Using TEM, bacteria in these areas were focused in the crevices formed by the extruding cell and the adjacent cells and in the cytoplasm immediately beneath the extruding cell. Our results suggest that early cellular invasion by Salmonella serovar Typhimurium is nonspecific and rapid in swine. Furthermore, the combination of SEM and TEM data suggests that Salmonella serovar Typhimurium may use sites of cell extrusion as an additional mechanism for early invasion
    • …
    corecore