A Database on Musicians' Movements During Musical Performances

David Ackermann, Christoph Böhm, Stefan Weinzierl

Audio Communication Group, TU Berlin Einsteinufer 17c, 10587 Berlin, Germany

> david.ackermann@tu-berlin.de stefan.weinzierl@tu-berlin.de

> > October 10, 2018

General Information

The following document describes a data base on the movements that musicians make during musical performances. It is provided under a Creative Commons BY-NC-SA licence, giving you the freedom to redistribute it under the same license and edit the database for non-commercial purposes .

For more information visit http://creativecommons.org/licenses/by-nc-sa/4.0/ and contact the authors for commercial use.

The documentation is focused on the structure and content of the data base. More information on the generation and processing can be found in the *Is Supplement To* entry on the DepositeOnce download page. If you use this database please cite it according to the mentioned entry.

Database description

The movements of 20 musicians playing 11 different musical instruments (Table 1), including all standard orchestral instruments, were captured during solo performances by means of a motion capturing system under concert-like conditions. The recordings were made in the Curt-Sachs-Saal (Tiergartenstraße 1, 10785 Berlin), a chamber music hall for an audience of 250.

Figure 1: Data structure of the database.

Instrument	Quantity	Group	
Violin	2		
Viola	2	Ct	
Cello	2	Strings	
Double Bass	1		
Flute	2		
Oboe	2	W7 li l-	
Clarinet	2	Woodwinds	
Bassoon	2		
Trumpet	2		
French Horn	2	Brass	
Trombone	1		

Table 1: Orchestra instruments invited for the motion capturing of different musical performances.

The movements of the musical instruments during the performance were captured with an optical motion tracking system (OptiTrack) and the associated Motive software. The system consisted of eight cameras and reflective markers. Each instrument was equipped with several markers, so that they were always visible by at least two of the cameras for reliable tracking. The positions of the instruments are provided by the software in cartesian coordinates and the orientation in quaternions in 120 Hz temporal resolution.

The CAD Software SketchUp was used to create 3D room models. Acoustical simulations were executed using the room simulation software RAVEN [1].

All simulations were done in third octave resolution, with the hybrid simulation algorithm using image sources up to third order and ray tracing using 86000 rays.

1 Motion and Audio Data

Each instrument was played by two different professional musicians, with the exception of bass and trombone that were played by only one. Each musician played three different music pieces of his or her own choice (Table 2), one time standing and one time sitting, except for the cello, that is usually played in a sitting position, and the double bass, that is usually played standing.

For each musician the tracked position data and the tracked rotation data are made available as comma-separated files and stored in the folders 1 Position The recorded audio and 2 Rotation. is provided in the Free Lossless Audio Codec (.flac) format at a sample rate of 44.1 kHz and stored in the folder 3 Audio.

All files are named according to the scheme:

instrument_content_playingPositionNr

For example Bassoon1_pos_standing1.csv (Figure 4) defines the position data (pos) for **Bassoon 1** while playing piece number 1 (E. Bozza - Pieces Breves, No. 1, Table 2) in standing position. The position data is represented in cartesian coordinates in the three axes x (column 2), y (column 3) and z (column 4) according to the axis convention shown in Figure 3 in meter. Column 1 of the comma-separated file represents the corresponding time stamp in seconds.

Whereas Bassoon1_rot_sitting3.csv (Figure 5) defines the rotation data (rot) for **Bassoon 1** while playing piece number **3** (I. Stravinsky - The Firebird, Table 2) in sitting position. The rotation data is represented in the quaternions a (column 2), b (column 3), c (column 4) and d (column Figure 2: Data structure of the Motion 5). Column 1 of the comma-separated file represents the corresponding time stamp in seconds.

and Audio Data folder.

Figure 3: Axis convention

Quaternions are generally represented in the form:

$$a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} \tag{1}$$

where a, b, c, and d are real numbers, and \mathbf{i}, \mathbf{j} , and \mathbf{k} are the fundamental quaternion units and

$$\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i}\mathbf{j}\mathbf{k} = -1.$$

Bassoon1_audio_sitting3.flac defines the audio data (audio) for Bassoon 1 while playing piece number 3 (*Stravinsky - Firebird*, Table 2) in sitting position.

An exception here is the cello, that was played only in a sitting position, and the double bass, that was played only standing. Bass_pos_standing11.csv defines the position data (pos) for Bass while playing piece number 1 (Karl Ditters von Dittersdorf - concerto No. 2, 2nd movement, Table 2) in standing position the first time, Whereas Bass_pos_standing12.csv defines the position data (pos) for Bass while playing piece number 1 (Karl Ditters von Dittersdorf - concerto No. 2, 2nd movement, Table 2) in standing position the first time, Whereas Bass_pos_standing12.csv defines the position data (pos) for Bass while playing piece number 1 (Karl Ditters von Dittersdorf - concerto No. 2, 2nd movement, Table 2) in standing position the second time.

1	Time in s,	x,	y,	z,
2	0.0000,	-0.04305446,	-0.02393479,	-0.04310548,
3	0.0083,	-0.04375851,	-0.02484681,	-0.04387516,
5832	48.5833,	-0.00863266,	0.05415662,	-0.01451498,
5833	48.5917,	-0.00954914,	0.05206001,	-0.01563459,

Figure 4: Bassoon1_pos_standing1.csv data format.

1 2 3	Time in s, 0.0000, 0.0083,	a, 0.99902866, 0.99902082,	b, 0.02498498, 0.02554117,	c, -0.01191384, -0.01274068,	d, 0.03428635, 0.03380426,
:					
12478	103.9667,	0.99983150,	-0.01319223,	-0.00163341,	0.01265947,
12479	103.9750,	0.99982086,	-0.01314478,	-0.00153958,	0.01353109,

Figure 5: Bassoon1_rot_sitting3.csv data format.

Instrument	Piece 1	Piece 9	Piece 3
Violin 1	I S Bach - Sonata No. 1	F Mendelssohn Bartholdy	F Mendelssohn Bartholdy
VIOIIII I	in G minor BWV 1001 1	- Violin Concerto in E mi-	Violin Concerto in E mi-
	Adagio	nor op. 64. 2. Andante	nor op. 64. 3. Allegretto
Violin 2	J. Sibelius - Violin Con-	W. A. Mozart - Violin	J. S. Bach - Sonata No. 1
	certo, 1. Allegro	Concerto No. 5, 1. Alle-	BWV 1001, 1. Adagio
	, C	gro	
Viola 1	I. Stravinsky - Elegie for	Eleni Karaindrou - Der	J. S. Bach - Partita No. 3
	solo viola	Blick des Odysseus	BWV 1006, Gigue
Viola 2	J. S. Bach - Suite No. 5	J. Stamitz - Viola Con-	J. Brahms - Viola Sonata
	BWV 1011, Gigue	certo, 1st movement	op. 120 No. 2 E flat ma-
			jor, 1st movement
Cello 1	P. Hindemith - Sonata No.	P. Hindemith - Sonata No.	P. Hindemith - Sonata No.
	3 op. 25, 1st movement	3 op. 25, 2nd movement	3 op. 25, 3rd movement
Cello 2	J. S. Bach - Suite No. 6	L. Boccherini - Sonata A	L. Boccherini - Sonata A
	D major BWV 1012, Pre-	major, G.4, 1st movement	major, G.4, 2nd move-
	lude		ment
Bass	Karl Ditters von Ditters-	S. Koussevitzky - Con-	J. S. Bach - Suite No. 2
	dorf - concerto No. 2, 2nd	certo No. 1, 1st movement	BWV 1008, Prelude
Flute 1	A Casella Sigilianna an	A Casalla Pumlasqua an	I C Dach Dartita A
riute 1	A. Casena - Sichienne op.	A. Casena - Duriesque op.	J. S. Dach - Faitha A minor BWV 1013 Allo
	20	20	mande
Flute 2	C Debussy - Syrinx	E Varese - Density 21.5	IS Bach - Partita A mi-
1 1400 2	C. Debussy Symmetry	E. Varebe Density 21.9	nor BWV 1013 Bourree
			angloise
Oboe 1	W. A. Mozart - Concerto	W. A. Mozart - Concerto	G. Ph. Telemann - Fan-
	for Oboe KV 314, 1st	for Oboe KV 314, 2nd	tasia for Oboe Solo No. 8
	movement	movement	Largo
Oboe 2	C. Ph. E. Bach, Sonata	W. A. Mozart - Concerto	V. Martini - Concerto for
	for Oboe and BC G minor	for Oboe KV 314	Oboe and Orchestra
	WQ 135		
Clarinet 1	C. Rose - Adagio	W. Osborne - Rhapsody	C. Rose - Etude Nr. 1
Clarinet 2	B. Kovacs - Hommage a	D. Häusler - Bazooka	D. Häusler - Pimpel da
1	Manuel De Falla		Besch
Bassoon 1	E. Bozza - Pieces Breves,	D. Shostakovich - Sym-	1. Stravinsky - The Fire-
	No. 1	phony No. 9, 4th move-	DIrd
Bassoon 2	B Koupes Hommore a	C Ph Tolomann Fan	C Ph Tolomonn Fonto
Da550011 2	Manuel De Falla	tasia No 7 A minor An	sia No. 9 F major Presto
	Manuel De Fana	dante	sia no. 5 r major, i resto
Trumpet 1	S. Rachmaninoff - Vocalise	JB. Lully - Marche	O. Ketting - Intrada
p	op. 34, No. 14		(1958)
Trumpet 2	P. Hindemith - Sonata, 1st	J. Haydn - Concerto E flat	P. Hindemith - Sonata,
-	movement	major, 2nd movement	3rd movement
Horn 1	W. A. Mozart - Horn Con-	R. Schumann - Adagio	R. Schumann: Adagio and
	certo No. $4~\mathrm{KV}$ 495, 1st	and Allegro op. 70 (Ex-	Allegro op. 70 (Excerpt
	movement, Exposition	cerpt from the Adagio)	from the Allegro)
Horn 2	M. Haydn - Concerto in D,	M. Haydn - Concerto in D,	D. Schnyder - Le monde
	1. Larghetto	2. Allegro non troppo	miniscule, 2. Le petit
			Americain
Trombone	F. David - Concertino E	F. David - Concertino E	Grøndahl - Concerto for
	nat major, 1st movement	nat major, 2nd movement	trombone

Table 2: Recorded music pieces

2 Geometry

The scene geometry and the surface properties can be found in the folder 2 Geometry (Figure 6) and are provided as SketchUp models (free for educational purposes) and comma-separated files containing material parameters. The file Model_Theater_An_Der_Wien.spk defines the geometry of the room Theater An Der Wien.

The SketchUp file contains a 3D model of the room, the positions and orientations of the source and the receiver (Figure 8). The colors assigned to the surfaces of the 3D model specify their material. For example,

Figure 6: Data structure of the Geometry folder.

the color named WIE_audience links to a material whose surface properties can be found in the WIE_audience.csv file (Figure 7) in the same folder. Absorption (column 2) and scattering (column 3) coefficients are given in third octave bands for a frequency range of 20 Hz to 20 kHz (column 1).

1	f in Hz,	absorption,	scattering,
2	20,	0.2,	0.3
3	25,	0.2,	0.3
:			
31	16000,	0.67,	0.7
32	20000,	0.67,	0.7

Figure 7: WIE_audience.csv data format.

To view the color of a surface in SketchUp, use the *Sample Point* option of the *Paint Bucket Tool*. The degree of detail in the scene geometry has been adapted to common standards [2, p. 176].

Figure 8: The positions and orientation of source (S1) and receiver (R1) in the Model_Theater_An_Der_Wien.spk SketchUp model.

3 Stimuli and Demo Video

The stimuli for the listening test were obtained by block-wise and time-variant convolution of the quasi-anechoic audio recording of these musical segments with the binaural impulse responses under both anechoic and reverberant conditions with RAVEN, using the FABIAN HRTF database [3, 4] as receiver. Auralizations of the static and dynamic sources always started with the same source orientation to make sure that no differences were audible at the beginning of a stimulus.

(3 Stimuli and Demo Video)

 - Oboe1_standing1.move
 - Flute1_standing1_anechoic_dynamic.flac
 - Flute1_standing1_anechoic_static.flac
- Flute1_standing1_reverberant_dynamic.flac
 Flute1_standing1_reverberant_static.flac
 - Trumpet2_standing3_anechoic_dynamic.flac
 - Trumpet2_standing3_anechoic_static.flac
 - Trumpet2_standing3_reverberant_dynamic.flac
 - Trumpet2_standing3_reverberant_static.flac
 - Violin1_standing2_anechoic_dynamic.flac
 - Violin1_standing2_anechoic_static.flac
 - Violin1_standing2_reverbarent_dynamic.flac
- Violin1_standing2_reverbarent_static.flac

Figure 9: Data structure of the Stimuli and Demo Video folder.

References

- D. Schröder, M. Vorländer: RAVEN: A Real-Time Framework for the Auralization of Interactive Virtual Environments. Proc. of Forum Acusticum, Aalborg, Denmark, 2011, p. 1541–1546.
- [2] M. Vorländer: Auralization. Fundamentals of acoustics, modelling, simulation, algorithms and acoustic virtual reality. Springer, Berlin, 2008.
- [3] F. Brinkmann, A. Lindau, S. Weinzierl, G. Geissler, S. van de Par: A High Resolution and Full-Spherical Head-Related Transfer Function Database for Different Head-Above-Torso Orientations. J. Acoust. Soc. Am. 65(10) (2017), p. 841–848.
- [4] F. Brinkmann, A. Lindau, S. Weinzierl, G. Geissler, S. van de Par, M. Müller-Trapet, R. Opdam, M. Vorländer: The FABIAN head-related transfer function data base. http://dx.doi.org/10.14279/depositonce-5718 (2017).