144 research outputs found

    Generating and manipulating transgenic animals using transposable elements

    Get PDF
    Transposable elements, or transposons, have played a significant role in the history of biological research. They have had a major influence on the structure of genomes during evolution, they can cause mutations, and their study led to the concept of so-called "selfish DNA". In addition, transposons have been manipulated as useful gene transfer vectors. While primarily restricted to use in invertebrates, prokaryotes, and plants, it is now clear that transposon technology and biology are just as relevant to the study of vertebrate species. Multiple transposons now have been shown to be active in vertebrates and they can be used for germline transgenesis, somatic cell transgenesis/gene therapy, and random germline insertional mutagenesis. The sophistication of these applications and the number of active elements are likely to increase over the next several years. This review covers the vertebrate-active retrotransposons and transposons that have been well studied and adapted for use as gene transfer agents. General considerations and predictions about the future utility of transposon technology are discussed

    Transposable elements and the dynamic somatic genome

    Get PDF
    Although alterations in the genomes of somatic cells cannot be passed on to future generations, they can have beneficial or detrimental effects on the host organism, depending on the context in which they occur. This review outlines the ways in which transposable elements have important consequences for somatic cell genomes

    Conditional gene expression in the mouse using a Sleeping Beauty gene-trap transposon

    Get PDF
    BACKGROUND: Insertional mutagenesis techniques with transposable elements have been popular among geneticists studying model organisms from E. coli to Drosophila and, more recently, the mouse. One such element is the Sleeping Beauty (SB) transposon that has been shown in several studies to be an effective insertional mutagen in the mouse germline. SB transposon vector studies have employed different functional elements and reporter molecules to disrupt and report the expression of endogenous mouse genes. We sought to generate a transposon system that would be capable of reporting the expression pattern of a mouse gene while allowing for conditional expression of a gene of interest in a tissue- or temporal-specific pattern. RESULTS: Here we report the systematic development and testing of a transposon-based gene-trap system incorporating the doxycycline-repressible Tet-Off (tTA) system that is capable of activating the expression of genes under control of a Tet response element (TRE) promoter. We demonstrate that the gene trap system is fully functional in vitro by introducing the "gene-trap tTA" vector into human cells by transposition and identifying clones that activate expression of a TRE-luciferase transgene in a doxycycline-dependent manner. In transgenic mice, we mobilize gene-trap tTA vectors, discover parameters that can affect germline mobilization rates, and identify candidate gene insertions to demonstrate the in vivo functionality of the vector system. We further demonstrate that the gene-trap can act as a reporter of endogenous gene expression and it can be coupled with bioluminescent imaging to identify genes with tissue-specific expression patterns. CONCLUSION: Akin to the GAL4/UAS system used in the fly, we have made progress developing a tool for mutating and revealing the expression of mouse genes by generating the tTA transactivator in the presence of a secondary TRE-regulated reporter molecule. A vector like the gene-trap tTA could provide a means for both annotating mouse genes and creating a resource of mice that express a regulable transcription factor in temporally- and tissue-specific patterns for conditional gene expression studies. These mice would be a valuable resource to the mouse genetics community for purpose of dissecting mammalian gene function

    Genetically engineered minipigs model the major clinical features of human neurofibromatosis type 1.

    Get PDF
    Neurofibromatosis Type 1 (NF1) is a genetic disease caused by mutations in Neurofibromin 1 (NF1). NF1 patients present with a variety of clinical manifestations and are predisposed to cancer development. Many NF1 animal models have been developed, yet none display the spectrum of disease seen in patients and the translational impact of these models has been limited. We describe a minipig model that exhibits clinical hallmarks of NF1, including café au lait macules, neurofibromas, and optic pathway glioma. Spontaneous loss of heterozygosity is observed in this model, a phenomenon also described in NF1 patients. Oral administration of a mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor suppresses Ras signaling. To our knowledge, this model provides an unprecedented opportunity to study the complex biology and natural history of NF1 and could prove indispensable for development of imaging methods, biomarkers, and evaluation of safety and efficacy of NF1-targeted therapies

    Gene mutations and genomic rearrangements in the mouse as a result of transposon mobilization from chromosomal concatemers

    Get PDF
    Previous studies of the Sleeping Beauty (SB) transposon system, as an insertional mutagen in the germline of mice, have used reverse genetic approaches. These studies have led to its proposed use for regional saturation mutagenesis by taking a forward-genetic approach. Thus, we used the SB system to mutate a region of mouse Chromosome 11 in a forward-genetic screen for recessive lethal and viable phenotypes. This work represents the first reported use of an insertional mutagen in a phenotype-driven approach. The phenotype-driven approach was successful in both recovering visible and behavioral mutants, including dominant limb and recessive behavioral phenotypes, and allowing for the rapid identification of candidate gene disruptions. In addition, a high frequency of recessive lethal mutations arose as a result of genomic rearrangements near the site of transposition, resulting from transposon mobilization. The results suggest that the SB system could be used in a forward-genetic approach to recover interesting phenotypes, but that local chromosomal rearrangements should be anticipated in conjunction with single-copy, local transposon insertions in chromosomes. Additionally, these mice may serve as a model for chromosome rearrangements caused by transposable elements during the evolution of vertebrate genomes. © 2006 Geurts et al
    corecore