88 research outputs found

    Lactate: brain fuel in human traumatic brain injury: a comparison with normal healthy control subjects.

    Get PDF
    We evaluated the hypothesis that lactate shuttling helps support the nutritive needs of injured brains. To that end, we utilized dual isotope tracer [6,6-(2)H2]glucose, that is, D2-glucose, and [3-(13)C]lactate techniques involving arm vein tracer infusion along with simultaneous cerebral (arterial [art] and jugular bulb [JB]) blood sampling. Traumatic brain injury (TBI) patients with nonpenetrating brain injuries (n=12) were entered into the study following consent of patients' legal representatives. Written and informed consent was obtained from control volunteers (n=6). Patients were studied 5.7Ā±2.2 (meanĀ±SD) days post-injury; during periods when arterial glucose concentration tended to be higher in TBI patients. As in previous investigations, the cerebral metabolic rate for glucose (CMRgluc, i.e., net glucose uptake) was significantly suppressed following TBI (p<0.001). However, lactate fractional extraction, an index of cerebral lactate uptake related to systemic lactate supply, approximated 11% in both healthy control subjects and TBI patients. Further, neither the CMR for lactate (CMRlac, i.e., net lactate release), nor the tracer-measured cerebral lactate uptake differed between healthy controls and TBI patients. The percentages of lactate tracer taken up and released as (13)CO2 into the JB accounted for 92% and 91% for control and TBI conditions, respectively, suggesting that most cerebral lactate uptake was oxidized following TBI. Comparisons of isotopic enrichments of lactate oxidation from infused [3-(13)C]lactate tracer and (13)C-glucose produced during hepatic and renal gluconeogenesis (GNG) showed that 75-80% of (13)CO2 released into the JB was from lactate and that the remainder was from the oxidation of glucose secondarily labeled from lactate. Hence, either directly as lactate uptake, or indirectly via GNG, peripheral lactate production accounted for āˆ¼70% of carbohydrate (direct lactate uptake+uptake of glucose from lactate) consumed by the injured brain. Undiminished cerebral lactate fractional extraction and uptake suggest that arterial lactate supplementation may be used to compensate for decreased CMRgluc following TBI

    Endogenous Nutritive Support after Traumatic Brain Injury: Peripheral Lactate Production for Glucose Supply via Gluconeogenesis.

    Get PDF
    We evaluated the hypothesis that nutritive needs of injured brains are supported by large and coordinated increases in lactate shuttling throughout the body. To that end, we used dual isotope tracer ([6,6-(2)H2]glucose, i.e., D2-glucose, and [3-(13)C]lactate) techniques involving central venous tracer infusion along with cerebral (arterial [art] and jugular bulb [JB]) blood sampling. Patients with traumatic brain injury (TBI) who had nonpenetrating head injuries (n=12, all male) were entered into the study after consent of patients' legal representatives. Written and informed consent was obtained from healthy controls (n=6, including one female). As in previous investigations, the cerebral metabolic rate (CMR) for glucose was suppressed after TBI. Near normal arterial glucose and lactate levels in patients studied 5.7Ā±2.2 days (range of days 2-10) post-injury, however, belied a 71% increase in systemic lactate production, compared with control, that was largely cleared by greater (hepatic+renal) glucose production. After TBI, gluconeogenesis from lactate clearance accounted for 67.1% of glucose rate of appearance (Ra), which was compared with 15.2% in healthy controls. We conclude that elevations in blood glucose concentration after TBI result from a massive mobilization of lactate from corporeal glycogen reserves. This previously unrecognized mobilization of lactate subserves hepatic and renal gluconeogenesis. As such, a lactate shuttle mechanism indirectly makes substrate available for the body and its essential organs, including the brain, after trauma. In addition, when elevations in arterial lactate concentration occur after TBI, lactate shuttling may provide substrate directly to vital organs of the body, including the injured brain

    Alleviation of Brain Injury-Induced Cerebral Metabolic Depression by Amphetamine: A Cytochrome Oxidase Histochemistry Study

    Get PDF
    Measurements of oxidative metabolic capacity following the ablation of rat sensorimotor cortex and ,he administration of amphetamine were examined to determine their effects on the metabolic dysfunction that follows brain injury. Twenty-four hours after surgery, rats sustaining either sham operations or unilateral cortical ablation were administered a single injection of D-amphetamine (2 mg/kg; i.p.) or saline and then sacrificed 24 h later. Brain tissue was processed for cytochrome oxidase histochemistry, and 12 bilateral cerebral areas were measured, using optical density as an index of the relative amounts of the enzyme. Compared with that of the control groups, cytochrome oxidase in the injured animals was significantly reduced throughout the cerebral cortex and in 5 of II subcortical structures. This injury-induced depression of oxidative capacity was most pronounced in regions of the hemisphere ipsilateral to the ablation. Animals given D-amphetamine had less depression of oxidative capacity, which was most pronounced bilaterally in the cerebral cortex, red nucleus, and superior colliculus; and in the nucleus accumbens, caudateputamen, and globus pallidus ipsilaterai to the ablation. The ability of D-amphetamine to alleviate depressed cerebral oxidative metabolism following cortical injury may be one mechanism by which drugs increasing noradrenaline release accelerate functional recovery in both animals and humans

    Neuroimaging of structural pathology and connectomics in traumatic brain injury: Toward personalized outcome prediction.

    Get PDF
    Recent contributions to the body of knowledge on traumatic brain injury (TBI) favor the view that multimodal neuroimaging using structural and functional magnetic resonance imaging (MRI and fMRI, respectively) as well as diffusion tensor imaging (DTI) has excellent potential to identify novel biomarkers and predictors of TBI outcome. This is particularly the case when such methods are appropriately combined with volumetric/morphometric analysis of brain structures and with the exploration of TBI-related changes in brain network properties at the level of the connectome. In this context, our present review summarizes recent developments on the roles of these two techniques in the search for novel structural neuroimaging biomarkers that have TBI outcome prognostication value. The themes being explored cover notable trends in this area of research, including (1) the role of advanced MRI processing methods in the analysis of structural pathology, (2) the use of brain connectomics and network analysis to identify outcome biomarkers, and (3) the application of multivariate statistics to predict outcome using neuroimaging metrics. The goal of the review is to draw the community's attention to these recent advances on TBI outcome prediction methods and to encourage the development of new methodologies whereby structural neuroimaging can be used to identify biomarkers of TBI outcome

    Patient-Tailored Connectomics Visualization for the Assessment of White Matter Atrophy in Traumatic Brain Injury

    Get PDF
    Available approaches to the investigation of traumatic brain injury (TBI) are frequently hampered, to some extent, by the unsatisfactory abilities of existing methodologies to efficiently define and represent affected structural connectivity and functional mechanisms underlying TBI-related pathology. In this paper, we describe a patient-tailored framework which allows mapping and characterization of TBI-related structural damage to the brain via multimodal neuroimaging and personalized connectomics. Specifically, we introduce a graphically driven approach for the assessment of trauma-related atrophy of white matter connections between cortical structures, with relevance to the quantification of TBI chronic case evolution. This approach allows one to inform the formulation of graphical neurophysiological and neuropsychological TBI profiles based on the particular structural deficits of the affected patient. In addition, it allows one to relate the findings supplied by our workflow to the existing body of research that focuses on the functional roles of the cortical structures being targeted. A graphical means for representing patient TBI status is relevant to the emerging field of personalized medicine and to the investigation of neural atrophy

    Poor Identification of Emergency Department Acute Recreational Drug Toxicity Presentations Using Routine Hospital Coding Systems: the Experience in Denmark, Switzerland and the UK

    Get PDF
    Understanding emergency department and healthcare utilisation related to acute recreational drug toxicity (ARDT) generally relies on nationally collated data based on ICD-10 coding. Previous UK studies have shown this poorly captures the true ARDT burden. The aim of this study was to investigate whether this is also the case elsewhere in Europe.; The Euro-DEN Plus database was interrogated for all presentations 1st July to 31st December 2015 to the EDs in (i) St Thomas' Hospital, London, UK; (ii) UniversitƤtsspital Basel, Basel, Switzerland; and (iii) Zealand University Hospital, Roskilde, Denmark. Comparison of the drug(s) involved in the presentation with the ICD-10 codes applied to those presentations was undertaken to determine the proportion of cases where the primary/subsequent ICD-10 code(s) were ARDT related.; There were 619 presentations over the 6-month period. Two hundred thirteen (34.4%) of those presentations were coded; 89.7% had a primary/subsequent ARDT-related ICD-10 code. One hundred percent of presentations to Roskilde had a primary ARDT ICD-10 code compared to 9.6% and 18.9% in Basel and London respectively. Overall, only 8.5% of the coded presentations had codes that captured all of the drugs that were involved in that presentation.; While the majority of primary and secondary codes applied related to ARDT, often they did not identify the actual drug(s) involved. This was due to both inconsistencies in the ICD-10 codes applied and lack of ICD-10 codes for the drugs/NPS. Further work and education is needed to improve consistency of use of current ICD-10 and future potential ICD-11 coding systems

    Clinical Trials in Head Injury

    Full text link
    Traumatic brain injury (TBI) remains a major public health problem globally. In the United States the incidence of closed head injuries admitted to hospitals is conservatively estimated to be 200 per 100,000 population, and the incidence of penetrating head injury is estimated to be 12 per 100,000, the highest of any developed country in the world. This yields an approximate number of 500,000 new cases each year, a sizeable proportion of which demonstrate signficant long-term disabilities. Unfortunately, there is a paucity of proven therapies for this disease. For a variety of reasons, clinical trials for this condition have been difficult to design and perform. Despite promising pre-clinical data, most of the trials that have been performed in recent years have failed to demonstrate any significant improvement in outcomes. The reasons for these failures have not always been apparent and any insights gained were not always shared. It was therefore feared that we were running the risk of repeating our mistakes. Recognizing the importance of TBI, the National Institute of Neurological Disorders and Stroke (NINDS) sponsored a workshop that brought together experts from clinical, research, and pharmaceutical backgrounds. This workshop proved to be very informative and yielded many insights into previous and future TBI trials. This paper is an attempt to summarize the key points made at the workshop. It is hoped that these lessons will enhance the planning and design of future efforts in this important field of research.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63185/1/089771502753754037.pd
    • ā€¦
    corecore