1,066 research outputs found

    Osmotic Edema Rapidly Increases Neuronal Excitability Through Activation of NMDA Receptor-Dependent Slow Inward Currents in Juvenile and Adult Hippocampus.

    Get PDF
    Cellular edema (cell swelling) is a principal component of numerous brain disorders including ischemia, cortical spreading depression, hyponatremia, and epilepsy. Cellular edema increases seizure-like activity in vitro and in vivo, largely through nonsynaptic mechanisms attributable to reduction of the extracellular space. However, the types of excitability changes occurring in individual neurons during the acute phase of cell volume increase remain unclear. Using whole-cell patch clamp techniques, we report that one of the first effects of osmotic edema on excitability of CA1 pyramidal cells is the generation of slow inward currents (SICs), which initiate after approximately 1 min. Frequency of SICs increased as osmolarity decreased in a dose-dependent manner. Imaging of real-time volume changes in astrocytes revealed that neuronal SICs occurred while astrocytes were still in the process of swelling. SICs evoked by cell swelling were mainly nonsynaptic in origin and NMDA receptor-dependent. To better understand the relationship between SICs and changes in neuronal excitability, recordings were performed in increasingly physiological conditions. In the absence of any added pharmacological reagents or imposed voltage clamp, osmotic edema induced excitatory postsynaptic potentials and burst firing over the same timecourse as SICs. Like SICs, action potentials were blocked by NMDAR antagonists. Effects were more pronounced in adult (8-20 weeks old) compared with juvenile (P15-P21) mice. Together, our results indicate that cell swelling triggered by reduced osmolarity rapidly increases neuronal excitability through activation of NMDA receptors. Our findings have important implications for understanding nonsynaptic mechanisms of epilepsy in relation to cell swelling and reduction of the extracellular space

    Predator telemetry informs temporal and spatial overlap with stocked salmonids in Lake Huron

    Get PDF
    Double-Crested Cormorants (Phalacrocorax auratus), Walleyes (Sander vitreus), and Lake Trout (Salvelinus namaycush) are migratory predators that undergo extensive movements in Lake Huron. Stocking of juvenile salmonid fish (Oncorhynchus and Salmo sp.) is an important component of fishery management in Lake Huron and assessing the spatial and temporal extent of predator movements is a useful consideration for determining when and where to stock juvenile fish to reduce predation and maximize survival. Previous investigation indicated that some Walleyes migrate to the main basin of Lake Huron in spring from Saginaw Bay. Similarly, telemetry studies of Lake Trout movement in Lake Huron have indicated an onshore movement in the spring. We used detection histories of Walleyes implanted with acoustic transmitters tagged in Saginaw Bay and Lake Trout implanted in northern Lake Huron to estimate the arrival date of migrating adults at eight ports in Lake Huron, where hatchery reared juvenile salmonids are stocked. Satellite telemetry of Cormorants that return to nesting grounds in northern Lake Huron were used to estimate their arrival dates at the same Lake Huron ports. Arrival of Walleye at Lake Huron ports ranged from April 10th to May 7th. Cormorants arrived earlier than Walleye at most Lake Huron ports (April 11th–April 18th). Lake Trout were more variable with a range of onshore movement from March 28th to May 16th. Our results suggested stocking efforts at these ports should generally occur before April 14th to decrease predatory impact from Cormorants, Walleyes, and Lake Trout

    The effective potential, critical point scaling and the renormalization group

    Full text link
    The desirability of evaluating the effective potential in field theories near a phase transition has been recognized in a number of different areas. We show that recent Monte Carlo simulations for the probability distribution for the order parameter in an equilibrium Ising system, when combined with low-order renormalization group results for an ordinary ϕ4\phi^4 system, can be used to extract the effective potential. All scaling features are included in the process.Comment: REVTEX file, 22 pages, three figures, submitted to Phys. Rev.

    Monte Carlo Methods for Estimating Interfacial Free Energies and Line Tensions

    Full text link
    Excess contributions to the free energy due to interfaces occur for many problems encountered in the statistical physics of condensed matter when coexistence between different phases is possible (e.g. wetting phenomena, nucleation, crystal growth, etc.). This article reviews two methods to estimate both interfacial free energies and line tensions by Monte Carlo simulations of simple models, (e.g. the Ising model, a symmetrical binary Lennard-Jones fluid exhibiting a miscibility gap, and a simple Lennard-Jones fluid). One method is based on thermodynamic integration. This method is useful to study flat and inclined interfaces for Ising lattices, allowing also the estimation of line tensions of three-phase contact lines, when the interfaces meet walls (where "surface fields" may act). A generalization to off-lattice systems is described as well. The second method is based on the sampling of the order parameter distribution of the system throughout the two-phase coexistence region of the model. Both the interface free energies of flat interfaces and of (spherical or cylindrical) droplets (or bubbles) can be estimated, including also systems with walls, where sphere-cap shaped wall-attached droplets occur. The curvature-dependence of the interfacial free energy is discussed, and estimates for the line tensions are compared to results from the thermodynamic integration method. Basic limitations of all these methods are critically discussed, and an outlook on other approaches is given

    Point defect dynamics in bcc metals

    Full text link
    We present an analysis of the time evolution of self-interstitial atom and vacancy (point defect) populations in pure bcc metals under constant irradiation flux conditions. Mean-field rate equations are developed in parallel to a kinetic Monte Carlo (kMC) model. When only considering the elementary processes of defect production, defect migration, recombination and absorption at sinks, the kMC model and rate equations are shown to be equivalent and the time evolution of the point defect populations is analyzed using simple scaling arguments. We show that the typically large mismatch of the rates of interstitial and vacancy migration in bcc metals can lead to a vacancy population that grows as the square root of time. The vacancy cluster size distribution under both irreversible and reversible attachment can be described by a simple exponential function. We also consider the effect of highly mobile interstitial clusters and apply the model with parameters appropriate for vanadium and α\alpha-iron.Comment: to appear in Phys. Rev.

    The Effect of Ordered Water on a Short, Strong (Speakman-Hadži) Hydrogen Bond

    Get PDF
    We have determined the structures of the sodium, tetrabutylam- monium (TBA) and bis(triphenylphosphoranylidene)ammonium (PNP) salts of the bis(4-nitrophenoxide) anion by X-ray crystallography. The sodium salt is a dihydrate, with the water oxygens coordinated to the sodium cations, and one hydogen from each water hydrogen bonded to one of the bridging oxygens of the anion. The TBA and PNP salts are anhydrous. Nevertheless the oxygen- oxygen distance is shortest in the sodium salt; 246.5 pm in the sodium salt, 247.5 pm in the TBA salt, and 249 pm in the PNP salt; suggesting that the hydrogen bond is not weakened by the water, and may be strongest in the hydrated salt. (All three compounds show Hadži type ii IR spectra, and are called Speakman-Hadži compounds in this paper.) The 2H chemical shifts of the bridging hydrogen in the three solids are 16.8 ppm for the sodium salt, 16.8 ppm for the TBA salt, and 16.5 ppm for the PNP salt. Again there is no evidence that the water weakens the hydrogen bond. These results can be understood by noting that the additional hydrogen bonds to the bridging oxygens decrease their proton affinity, but the mutual repulsion of the oxygens is also decreased

    CRANKITE: a fast polypeptide backbone conformation sampler

    Get PDF
    Background: CRANKITE is a suite of programs for simulating backbone conformations of polypeptides and proteins. The core of the suite is an efficient Metropolis Monte Carlo sampler of backbone conformations in continuous three-dimensional space in atomic details. Methods: In contrast to other programs relying on local Metropolis moves in the space of dihedral angles, our sampler utilizes local crankshaft rotations of rigid peptide bonds in Cartesian space. Results: The sampler allows fast simulation and analysis of secondary structure formation and conformational changes for proteins of average length

    Dynamical transition, hydrophobic interface, and the temperature dependence of electrostatic fluctuations in proteins

    Full text link
    Molecular dynamics simulations have revealed a dramatic increase, with increasing temperature, of the amplitude of electrostatic fluctuations caused by water at the active site of metalloprotein plastocyanin. The increased breadth of electrostatic fluctuations, expressed in terms of the reorganization energy of changing the redox state of the protein, is related to the formation of the hydrophobic protein/water interface allowing large-amplitude collective fluctuations of the water density in the protein's first solvation shell. On the top of the monotonic increase of the reorganization energy with increasing temperature, we have observed a spike at 220 K also accompanied by a significant slowing of the exponential collective Stokes shift dynamics. In contrast to the local density fluctuations of the hydration-shell waters, these spikes might be related to the global property of the water solvent crossing the Widom line.Comment: 9 pages, 8 figure

    Phase transition of meshwork models for spherical membranes

    Full text link
    We have studied two types of meshwork models by using the canonical Monte Carlo simulation technique. The first meshwork model has elastic junctions, which are composed of vertices, bonds, and triangles, while the second model has rigid junctions, which are hexagonal (or pentagonal) rigid plates. Two-dimensional elasticity is assumed only at the elastic junctions in the first model, and no two-dimensional bending elasticity is assumed in the second model. Both of the meshworks are of spherical topology. We find that both models undergo a first-order collapsing transition between the smooth spherical phase and the collapsed phase. The Hausdorff dimension of the smooth phase is H\simeq 2 in both models as expected. It is also found that H\simeq 2 in the collapsed phase of the second model, and that H is relatively larger than 2 in the collapsed phase of the first model, but it remains in the physical bound, i.e., H<3. Moreover, the first model undergoes a discontinuous surface fluctuation transition at the same transition point as that of the collapsing transition, while the second model undergoes a continuous transition of surface fluctuation. This indicates that the phase structure of the meshwork model is weakly dependent on the elasticity at the junctions.Comment: 21 pages, 12 figure
    corecore