29,314 research outputs found

    High temperature refractory member with radiation emissive overcoat

    Get PDF
    A radiation type heat dissipator for use in a plasma engine is formed of a refractory metal layer upon which there is deposited a radiation emissive coating made of a high emissivity material such as zirconium diboride. The radiation emissive coating has a surface emissivity coefficient substantially greater than the emissivity coefficient of the refractory metal and thereby enhances the optical radiating efficiency of the heat dissipator

    The NASA Electric Propulsion Program

    Get PDF
    The NASA OAST Propulsion, Power, and Energy Division supports an electric propulsion program aimed at providing benefits to a broad class of missions. Concepts which have the potential to enable or significantly benefit space exploration and exploitation are identified and advanced toward application in the near and far term. This paper summarizes recent program progress in mission/system analysis; in electrothermal, electrostatic, and electromagnetic propulsion technologies; and in propulsion/spacecraft integration

    Energy-Efficient Transmission Scheduling with Strict Underflow Constraints

    Full text link
    We consider a single source transmitting data to one or more receivers/users over a shared wireless channel. Due to random fading, the wireless channel conditions vary with time and from user to user. Each user has a buffer to store received packets before they are drained. At each time step, the source determines how much power to use for transmission to each user. The source's objective is to allocate power in a manner that minimizes an expected cost measure, while satisfying strict buffer underflow constraints and a total power constraint in each slot. The expected cost measure is composed of costs associated with power consumption from transmission and packet holding costs. The primary application motivating this problem is wireless media streaming. For this application, the buffer underflow constraints prevent the user buffers from emptying, so as to maintain playout quality. In the case of a single user with linear power-rate curves, we show that a modified base-stock policy is optimal under the finite horizon, infinite horizon discounted, and infinite horizon average expected cost criteria. For a single user with piecewise-linear convex power-rate curves, we show that a finite generalized base-stock policy is optimal under all three expected cost criteria. We also present the sequences of critical numbers that complete the characterization of the optimal control laws in each of these cases when some additional technical conditions are satisfied. We then analyze the structure of the optimal policy for the case of two users. We conclude with a discussion of methods to identify implementable near-optimal policies for the most general case of M users.Comment: 109 pages, 11 pdf figures, template.tex is main file. We have significantly revised the paper from version 1. Additions include the case of a single receiver with piecewise-linear convex power-rate curves, the case of two receivers, and the infinite horizon average expected cost proble

    The H\alpha\ surface brightness - radius relation: a robust statistical distance indicator for planetary nebulae

    Get PDF
    Measuring the distances to Galactic planetary nebulae (PNe) has been an intractable problem for many decades. We have now established a robust optical statistical distance indicator, the Hα\alpha surface brightness- radius or S-r relation, which addresses this problem. We developed this relation from a critically evaluated sample of primary calibrating PNe. The robust nature of the method results from our revised calibrating distances with significantly reduced systematic uncertainties, and the recent availability of high-quality data, including updated nebular diameters and integrated Hα\alpha fluxes. The S-r technique is simple in its application, requiring only an angular size, an integrated H\alpha\ flux, and the reddening to the PN. From these quantities, an intrinsic radius is calculated, which when combined with the angular size, yields the distance directly. Furthermore, we have found that optically thick PNe tend to populate the upper bound of the trend, while optically-thin PNe fall along the lower boundary in the S-r plane. This enables sub-trends to be developed which offer even better precision in the determination of distances, as good as 18 per cent in the case of optically-thin, high-excitation PNe. This is significantly better than any previous statistical indicator. We use this technique to create a catalogue of statistical distances for over 1100 Galactic PNe, the largest such compilation in the literature to date. Finally, in an appendix, we investigate both a set of transitional PNe and a range of PN mimics in the S-r plane, to demonstrate its use as a diagnostic tool. Interestingly, stellar ejecta around massive stars plot on a tight locus in S-r space with the potential to act as a separate distance indicator for these objects.Comment: 49 pages, 17 tables, 8 figures. Published in MNRAS; supplementary tables are included at end of this manuscrip

    Improving Lexical Choice in Neural Machine Translation

    Full text link
    We explore two solutions to the problem of mistranslating rare words in neural machine translation. First, we argue that the standard output layer, which computes the inner product of a vector representing the context with all possible output word embeddings, rewards frequent words disproportionately, and we propose to fix the norms of both vectors to a constant value. Second, we integrate a simple lexical module which is jointly trained with the rest of the model. We evaluate our approaches on eight language pairs with data sizes ranging from 100k to 8M words, and achieve improvements of up to +4.3 BLEU, surpassing phrase-based translation in nearly all settings.Comment: Accepted at NAACL HLT 201

    Analogue gravity and radial fluid flows: The case of AdS and its deformations

    Full text link
    An analogue model for the AdS2\text{AdS}_2 spacetime has been recently introduced by Mosna, Pitelli and Richartz [Phys. Rev. D 94, 104065 (2016)] by considering sound waves propagating on a fluid with an ill-defined velocity profile at its source/sink. The wave propagation is then uniquely defined only when one imposes an extra boundary condition at the source/sink (which corresponds to the spatial infinity of AdS2\text{AdS}_2). Here we show that, once this velocity profile is smoothed out at the source/sink, the need for extra boundary conditions disappears. This, in turn, corresponds to deformations of the AdS2\text{AdS}_2 spacetime near its spatial infinity. We also examine how this regularization of the velocity profile picks up a specific boundary condition for the idealized system, so that both models agree in the long wavelength limit.Comment: 6 pages, 3 figures. To appear in Phys Rev
    corecore