13 research outputs found

    The recombination spectrum of Carbon II

    Get PDF
    The determination of the physical parameters of various astrophysical plasmas requires accurate calculation of the radiative and collisional processes involved. The recombination spectrum of Carbon II lends itself to investigating regions such as gaseous nebulae and low temperature stellar winds. In this thesis, a detailed treatment of the recombination processes of CII has been carried out, covering a wide range of temperatures and densities. Accurate photoionisation calculations, using the R-matrix solution to the close coupling equations have been performed. In the process, bound state energy levels have been determined and new weighted oscillator strengths calculated, over a larger range and with a greater accuracy, than had been previously achieved. With careful attention to resonances, which dominate the recombination at low temperatures, recombination coefficients have been evaluated for all states up to n = 15, L = 4. As well as radiative processes, all important collisional processes have been included, creating a full collisional-radiative-cascade model, in order to determine the populations of the states of CII at varying temperatures and densities. Detailed comparison with previous theoretical work has been made. The application of the CII recombination spectrum to the observed spectra of two contrasting astrophysical plasmas such as cold nova shells and Wolf-Rayet stellar winds is considered. The usefulness and applicability of the CII recombination spectrum as a diagnostic tool is ably demonstrated

    Observations Supporting the Role of Magnetoconvection in Energy Supply to the Quiescent Solar Atmosphere

    Get PDF
    Identifying the two physical mechanisms behind the production and sustenance of the quiescent solar corona and solar wind poses two of the outstanding problems in solar physics today. We present analysis of spectroscopic observations from the Solar and Heliospheric Observatory that are consistent with a single physical mechanism being responsible for a significant portion of the heat supplied to the lower solar corona and the initial acceleration of the solar wind; the ubiquitous action of magnetoconvection-driven reprocessing and exchange reconnection of the Sun's magnetic field on the supergranular scale. We deduce that while the net magnetic flux on the scale of a supergranule controls the injection rate of mass and energy into the transition region plasma it is the global magnetic topology of the plasma that dictates whether the released ejecta provides thermal input to the quiet solar corona or becomes a tributary that feeds the solar wind.Comment: 34 pages, 13 figures - In press Astrophysical Journal (Jan 1 2007

    The Post-Eruptive Evolution of a Coronal Dimming

    Full text link
    We discuss the post-eruptive evolution of a "coronal dimming" based on observations of the EUV corona from the Solar and Heliospheric Observatory and the Transition Region and Coronal Explorer. This discussion highlights the roles played by magnetoconvection-driven magnetic reconnection and the global magnetic environment of the plasma in the "filling" and apparent motion of the region following the eruption of a coronal mass ejection (CME). A crucial element in our understanding of the dimming region evolution is developed by monitoring the disappearance and reappearance of bright TRACE "moss" around the active region giving rise to the CME. We interpret the change in the TRACE moss as a proxy of the changing coronal magnetic field topology behind the CME front. We infer that the change in global magnetic topology also results in a shift of energy balance in the process responsible for the production of the moss emission while the coronal magnetic topology evolves from closed, to open and back to closed again because, following the eruption, the moss reforms around the active region in almost exactly its pre-event configuration. As a result of the moss evolution, combining our discussion with recent spectroscopic results of an equatorial coronal hole, we suggest that the interchangeable use of the term "transient coronal hole" to describe a coronal dimming is more than just a simple coincidence.Comment: In Press ApJ [May 2007] - 15 pages, 5 figures, 7 movies that are available upon request [contact author

    Simple Magnetic Flux Balance as an Indicator of Neon VIII Doppler Velocity Partitioning in an Equatorial Coronal Hole

    Get PDF
    We present a novel investigation into the relationship between simple estimates of magnetic flux balance and the Ne VIII Doppler velocity partitioning of a large equatorial coronal hole observed by the Solar Ultraviolet Measurements of Emitted Radiation spectrometer (SUMER) on the Solar and Heliospheric Observatory (SOHO) in November 1999. We demonstrate that a considerable fraction of the large scale Doppler velocity pattern in the coronal hole can be qualitatively described by simple measures of the local magnetic field conditions, i.e., the relative unbalance of magnetic polarities and the radial distance required to balance local flux concentrations with those of opposite polarity.Comment: To appear ApJL (June

    The Coronal Analysis of SHocks and Waves (CASHeW) framework

    No full text
    Coronal bright fronts (CBF) are large-scale wavelike disturbances in the solar corona, related to solar eruptions. They are observed (mostly in extreme ultraviolet (EUV) light) as transient bright fronts of finite width, propagating away from the eruption source location. Recent studies of individual solar eruptive events have used EUV observations of CBFs and metric radio type II burst observations to show the intimate connection between waves in the low corona and coronal mass ejection (CME)-driven shocks. EUV imaging with the atmospheric imaging assembly instrument on the solar dynamics observatory has proven particularly useful for detecting large-scale short-lived CBFs, which, combined with radio and in situ observations, holds great promise for early CME-driven shock characterization capability. This characterization can further be automated, and related to models of particle acceleration to produce estimates of particle fluxes in the corona and in the near Earth environment early in events. We present a framework for the coronal analysis of shocks and waves (CASHeW). It combines analysis of NASA Heliophysics System Observatory data products and relevant data-driven models, into an automated system for the characterization of off-limb coronal waves and shocks and the evaluation of their capability to accelerate solar energetic particles (SEPs). The system utilizes EUV observations and models written in the interactive data language. In addition, it leverages analysis tools from the SolarSoft package of libraries, as well as third party libraries. We have tested the CASHeW framework on a representative list of coronal bright front events. Here we present its features, as well as initial results. With this framework, we hope to contribute to the overall understanding of coronal shock waves, their importance for energetic particle acceleration, as well as to the better ability to forecast SEP events fluxes

    Deciphering solar magnetic activity.I. On the relationship between the sunspot cycle and the evolution of small magnetic features

    No full text
    Sunspots are a canonical marker of the Sun's internal magnetic field which flips polarity every similar to 22 yr. The principal variation of sunspots, an similar to 11 yr variation, modulates the amount of the magnetic field that pierces the solar surface and drives significant variations in our star's radiative, particulate, and eruptive output over that period. This paper presents observations from the Solar and Heliospheric Observatory and Solar Dynamics Observatory indicating that the 11 yr sunspot variation is intrinsically tied to the spatio-temporal overlap of the activity bands belonging to the 22 yr magnetic activity cycle. Using a systematic analysis of ubiquitous coronal brightpoints and the magnetic scale on which they appear to form, we show that the landmarks of sunspot cycle 23 can be explained by considering the evolution and interaction of the overlapping activity bands of the longer-scale variability.Astronomy & AstrophysicsSCI(E)[email protected]

    Deciphering Solar Magnetic Activity. I. On the Relationship Between the Sunspot Cycle and the Evolution of Small Magnetic Features

    No full text
    Sunspots are a canonical marker of the Sun's internal magnetic field which flips polarity every ~22 yr. The principal variation of sunspots, an ~11 yr variation, modulates the amount of the magnetic field that pierces the solar surface and drives significant variations in our star's radiative, particulate, and eruptive output over that period. This paper presents observations from the Solar and Heliospheric Observatory and Solar Dynamics Observatory indicating that the 11 yr sunspot variation is intrinsically tied to the spatio-temporal overlap of the activity bands belonging to the 22 yr magnetic activity cycle. Using a systematic analysis of ubiquitous coronal brightpoints and the magnetic scale on which they appear to form, we show that the landmarks of sunspot cycle 23 can be explained by considering the evolution and interaction of the overlapping activity bands of the longer-scale variability
    corecore