8 research outputs found

    Biochemical, nutrient and inhibitory characteristics of Streptomyces cultured from a hypersaline estuary, the laguna Madre (Texas)

    Get PDF
    Streptomyces are common soil bacteria that produce secondary metabolites, including several antibiotics; however, the characteristics of marine Streptomyces are largely unknown. Sediment samples were taken from 3 sites in the Laguna Madre to isolate marine Streptomyces. Sediment was diluted, spread onto synthetic seawater media to estimate the total bacterial density of the samples and spread onto starch casein agar to isolate Streptomyces. Isolated Streptomyces were tested for salinity tolerance and optimal growth pH. Isolates were assayed using API 20E® test strips and BIOLOG™ plates to construct biochemical profiles and assess nutrient utilization abilities of the bacteria, respectively. Individual Streptomyces were tested for the ability to inhibit the growth of other isolated Streptomyces (i.e., interference competition) and putatively identified by DNA sequencing. Results showed that there was no significant difference in microbial density in sediments from the 3 sampling sites. Eleven (11) Streptomyces pure cultures were obtained in total; most tolerated salinity up to 60 ppt and grew optimally at pH 7.5. Biochemical profile comparisons showed that the Streptomyces were only at least 74% similar; most (8/11) were \u3e90% similar. Isolates could use between 87-95 carbon sources. Three (3) isolates displayed interference toward other isolates. Ten (10) isolates were identified as Streptomyces griseus by DNA sequencing. Laguna Madre Streptomyces organisms display some diverse characteristics with regards to their halotolerance, biochemical profiles, carbon source utilization and inhibition toward other organisms. Further investigations may yield greater understanding of these organisms in this and other marine environments and may be a reservoir of novel microorganisms and secondary metabolites

    Evaluating the long-term storage of Cryphonectria parasitica

    Get PDF
    Isolates of the Chestnut blight pathogen, Cryphonectria parasitica, from six populations in Michigan, were stored in the late 1990s as agar plugs of mycelium in vials of sterile water held at room temperature. Approximately 29% of the fungal isolates were infected with mycoviruses at the time of storage. Each isolate was tested for revivification effectiveness by taking aliquots from vials filled with agar plugs of C. parasitica and sterile water and plating onto potato dextrose agar. Average revivification success was 70.5% across populations with a range of 33—84% within populations. In situations where vials had dried out during storage, success was low (4%), while success for vials that retained sterile water averaged 90%. Most importantly however, is the loss of mycoviruses from stored isolates; only 2 of 119 stored mycovirus infected isolates still contained mycoviruses after storage, suggesting that the double-stranded RNA mycoviruses are degraded during storage

    Modeling and Analysis of American Chestnut Populations Subject to Various Stages of Infection

    No full text
    American chestnuts, Castanea dentata, were once a dominant tree in eastern deciduous forests of the United States before the chestnut blight fungus, Cryphonectria parasitica, was introduced unintentionally in the early 1900s in New York. This fungus rapidly devastated American chestnut populations until a hypovirus infection of the fungus began to reduce pathogen virulence on chestnut trees. The subsequent reappearance of large reproducing chestnut trees, associated with a large proportion of blight-infected isolates being parasitized by this hypovirus, is currently taken to indicate recovery of American chestnut populations. We explore, using previously-established matrix population models, the dynamics of healthy, fungus-infected, and hypovirus-infected American chestnut populations to test the efficacy of this recovery. Our main result is that populations transitioning from being fungus-infected to hypovirus-infected are predicted to show large transient amplifications as a result of demographic transitions, only to decline asymptotically to zero, and this result is robust to uncertainty in fecundity values. Our results suggest that the current recovery of the American chestnut population may be a transient phenomenon and that more conservation efforts may be necessary to ensure its long-term persistence

    Evolutionary string theory

    No full text
    corecore