8 research outputs found

    Pyrolysis of casein, characterization and properties of obtained solid and liquid products

    Get PDF
    Have been determined the technical characteristics and elemental composition of milk casein. Pyrolysis experiments of casein carried out at different heating temperatures and determined the yields of obtained solid (biochar), liquid (tar and pyrolysis water) and gas products. A temperature around 550ºC determined as an optimal heating temperature of pyrolysis and approximately 28.33% biochar, 37.38% tar, 13.23% pyrolysis water and 20.84% gas obtained after pyrolysis. First time a biochar with higher content of nitrogen was obtained by pyrolysis of casein and determined it is elemental composition and technical specifications. The porous structure of casein biochar was characterized by mercury porosimeter and SEM analysis confirmed that casein biochar has mostly meso and macro pores. The casein tar had the elemental composition: C-66.7%, H-8.3%, N-12.1%, O-12.9% and was completely soluble in 1-methyl-2-pyrroldinone. The tar consisted mostly of moderate molecular mass components with SEC elution times between 18-26 min and an estimated mass range up to 3000-5000 mass units as well as some larger size components, possibly 3-dimentional. The property and determined chemical composition of casein tar by GC/MS analysis were an evidence for using it as a curing agent for crosslinking reactions of epoxy resins. The necessary amount of tar for curing reaction of epoxy resin was determined experimentally as a 15-20% for the stoichiometric amount of reactive epoxy groups (15-20% epoxy group content) in epoxy resin and obtained cured epoxy resin with 95% degree of crosslinking reaction. Have been suggested several curing reaction schemes of epoxy resin with amines, nitriles and phenols of the casein ta

    Mongolian Herders’ Evaluation of Rangeland Ecosystems Services, Values, and Changes over the Past Decade

    Get PDF
    Mongolia\u27s rangeland is one of the largest remaining contiguous ecosystems encompassing 2.6% of the global grasslands, and almost three-fourths of the country\u27s territory provides essential ecosystem services (ESS) for over 3 million Mongolians and 71 million livestock. The well-being of 171,605 pastoral households directly depends on the rangelands receiving provisional services in the forms of nutrition, material use and energy, regulatory services, and cultural services. This study explored herders\u27 perceptions of these ESS, their evaluation for ESS values, and observations of ESS change for the last decade. The study found that Mongolian herders have more benefits from provisional ESS (on average, 10 out of 18 identified), including nutritional and material use (four out of six and nine respectively), and energy services (two types out of three). An average herder household said to receive eight types of regulatory services out of 10, including environment regulation, storage/sequestration, erosion control, disease, and pest control, flood and wind protection, water cycle, soil formation and climate regulation, and six cultural services out of seven such as experiential and intellectual interactions with nature, historical and cultural heritage, both symbolic and religious-spiritual customs and nomadic identity and pride. The herders most valued the provisioning services, followed by regulatory services, and reported a declining trend in provisioning ESS for the past decade, while, in their views, non-provisioning services remained the same. Herders\u27 reported about the exploitation of local ecosystems by external companies without sharing benefits with pastoral communities and contributing to the ESS restoration and maintenance, which was the expression of the common rangeland marginalization narrative. The study recommends necessary policies and actions to ensure equitable benefit distribution derived from rangelands to support adaptive capacity and well-being of pastoral communities, essentially acknowledge the importance of non-provisional ESS across various levels

    CHARACTERIZATION OF COAL FROM BAYANTEEG DEPOSIT

    Get PDF
    The coal of Bayanteeg deposit was investigated and its technical characteristics, elemental and petrographical maceral compositions were determined. On the basis of proximate, ultimate, petrographic analyses results, it has been confirmed that the Bayanteeg coal is a middle-rank D mark subbituminous coal. The pyrolysis of Bayanteeg coal was studied by using a standard quarts retort (tube) at different heating temperatures and the yields of pyrolysis products such as hard residue, tar, pyrolytic water and gas were determined. The result of these experiments showed that the higher yield 14% of tar can be obtained at heating temperature 500°C.Also the thermal dissolution of Bayanteeg coal was investigated by using a standard stainless steel autoclave at different heating temperatures and the yields of pyrolysis poroducts such as hard residue, tar, pyrolytic water and gas were determined. The tetralin was used as hydrogen donor solvent with constant mass ratio between coal and tetralin (1:1.8). The results of these experiments showed that high yield of tar 48% can be obtained on thermal dissolution of the coal organic mass at 450°C. The solubility of purified pyrolysis tar of Bayanteeg coal in hexane, benzene and dichloromethane was investigated by using silica gel column and the chemical composition of each fraction was determined by using of GC/MS chromatograph system

    Investigation on pyrolysis of some organic raw materials

    Get PDF
    We have been working on pyrolysis of some organic raw materials including different rank coals, oil shale, wood waste, animal bone, cedar shell, polypropylene waste, milk casein and characterization of obtained hard residue, tar and pyrolytic water and gas after pyrolysis. The technical characteristics of these organic raw materials have been determined and the thermal stability characteristics such as thermal stability indices (T5% and T25%) determined by using thermogravimetric analysis. The pyrolysis experiments were performed at different heating temperatures and the yields of hard residue, tar, pyrolysis water and gaseous products were determined and discussed. The main technical characteristics of hard residue of organic raw materials after pyrolysis have been determined and the adsorption ability of pyrolysis hard residue and its activated carbon of organic raw materials also determined. The pyrolysis tars of organic raw materials were distilled in air condition and determined the yields of obtained light, middle and heavy fractions and bitumen like residue with different boiling temperature. This is the first time to investigate the curing ability of pyrolysis tars of organic raw materials for epoxy resin and the results of these experiments showed that only tar of milk casein has the highest (95.0%), tar of animal bone has certain (18.70%) and tars of all other organic raw materials have no curing ability for epoxy resin

    Property of upgraded solid and liquid products from Baganuur lignite by thermal reaction with solvent

    No full text
    The coal of Baganuur deposit have been investigated to determine its technical characteristics, elemental and petrographical maceral compositions. On the basis of proximate, ultimate, petrographic and FTIR analysis, the obtained results have confirmed that the Baganuur coal is a low rank lignite B2 mark. The liquid tar, produced through thermolysis of Baganuur coal, was investigated by FTIR, 13C and 1H NMR spectrometric analysis. The results of thermolysis of Baganuur coal in tetralin has a constant mass ratio between coal and tetralin (1:1.8) at 450°C, which shows that 40.0% of liquid product can be obtained after thermal decomposition of the coal organic mass

    Cystic Echinococcoses in Mongolia: Molecular Identification, Serology and Risk Factors

    Get PDF
    BACKGROUND: Cystic echinococcosis (CE) is a globally distributed cestode zoonosis that causes hepatic cysts. Although Echinococcus granulosus sensu stricto (s.s.) is the major causative agent of CE worldwide, recent molecular epidemiological studies have revealed that E. canadensis is common in countries where camels are present. One such country is Mongolia. METHODOLOGY/PRINCIPAL FINDINGS: Forty-three human hepatic CE cases that were confirmed histopathologically at the National Center of Pathology (NCP) in Ulaanbaatar (UB) were identified by analysis of mitochondrial cox 1 gene as being caused by either E. canadensis (n=31, 72.1%) or E. granulosus s.s. (n=12, 27.9%). The majority of the E. canadensis cases were strain G6/7 (29/31, 93.5%). Twenty three haplotypes were identified. Sixteen of 39 CE cases with data on age, sex and province of residence were citizens of UB (41.0%), with 13 of the 16 cases from UB caused by E. canadensis (G6/7) (81.3%). Among these 13 cases, nine were children (69.2%). All pediatric cases (n  =  18) were due to E. canadensis with 17 of the 18 cases (94.4%) due to strain G6/7. Serum samples were available for 31 of the 43 CE cases, with 22 (71.0%) samples positive by ELISA to recombinant Antigen B8/1 (rAgB). Nine of 10 CE cases caused by E. granulosus s.s. (90.0%) and 13 of 20 CE cases by E. canadensis (G6/7) (65.0%) were seropositive. The one CE case caused by E. canadensis (G10) was seronegative. CE cases caused by E. granulosus s.s. showed higher absorbance values (median value 1.131) than those caused by E. canadensis (G6/7) (median value 0.106) (p  =  0.0137). CONCLUSION/SIGNIFICANCE: The main species/strains in the study population were E. canadenis and E. granulossus s.s. with E. canadensis the predominant species identified in children. The reason why E. canadensis appears to be so common in children is unknown
    corecore