363 research outputs found

    The Reionization of Carbon

    Full text link
    Observations suggest that CII was more abundant than CIV in the intergalactic medium towards the end of the hydrogen reionization epoch. This transition provides a unique opportunity to study the enrichment history of intergalactic gas and the growth of the ionizing background (UVB) at early times. We study how carbon absorption evolves from z=10-5 using a cosmological hydrodynamic simulation that includes a self-consistent multifrequency UVB as well as a well-constrained model for galactic outflows to disperse metals. Our predicted UVB is within 2-4 times that of Haardt & Madau (2012), which is fair agreement given the uncertainties. Nonetheless, we use a calibration in post-processing to account for Lyman-alpha forest measurements while preserving the predicted spectral slope and inhomogeneity. The UVB fluctuates spatially in such a way that it always exceeds the volume average in regions where metals are found. This implies both that a spatially-uniform UVB is a poor approximation and that metal absorption is not sensitive to the epoch when HII regions overlap globally even at column densites of 10^{12} cm^{-2}. We find, consistent with observations, that the CII mass fraction drops to low redshift while CIV rises owing the combined effects of a growing UVB and continued addition of carbon in low-density regions. This is mimicked in absorption statistics, which broadly agree with observations at z=6-3 while predicting that the absorber column density distributions rise steeply to the lowest observable columns. Our model reproduces the large observed scatter in the number of low-ionization absorbers per sightline, implying that the scatter does not indicate a partially-neutral Universe at z=6.Comment: 16 pages, 14 figures, accepted to MNRA

    The baryonic Tully-Fisher relation in the Simba simulation

    Get PDF

    The redshift evolution of the baryonic Tully-Fisher relation in Simba

    Get PDF
    The baryonic Tully-Fisher relation (BTFR) is an important tool for constraining galaxy evolution models. As 21-cm HI emission studies have been largely restricted to low redshifts, the redshift evolution of the BTFR is yet to be fully studied. The upcoming LADUMA survey (Looking At the Distant Universe with the MeerKAT Array) will address this. As preparation for LADUMA, we use the Simba hydrodynamical galaxy formation simulation from the Simba-hires (25 h−1^{-1} Mpc)3^{3} run to generate rotational velocity measures from galaxy rotation curves (VflatV_{\rm flat}) and HI spectral line profile widths (W50W50 and W20W20) at three different redshifts (zz = 0, 0.5, and 1). Using these measures, together with the dark matter velocity dispersion, we consider the redshift evolution of the BTFR of Simba galaxies. We find that LADUMA will be successful in detecting redshift evolution of the BTFR, provided that auxiliary data is used to distinguish galaxies with disky morphologies. W20W20 spectral line widths give lower scatter and more pronounced redshift evolution compared to W50W50. We also compare these rotational velocity measures to the dark matter velocity dispersion across redshift and galaxy morphology. We find weak redshift evolution between rotational velocity and the dark matter halo mass, and provide fits for estimating a galaxy's dark matter halo mass from HI spectral line widths. This study with Simba showcases the importance of upcoming, deep SKA pathfinder surveys such as LADUMA, and provides predictions to compare with redshift evolution of the BTFR and galaxy dark matter content from HI rotational velocity measures.Comment: 15 pages, 7 figures. Submitted to MNRA

    PC1643+4631A,B: The Lyman-Alpha Forest at the Edge of Coherence

    Full text link
    This is the first measurement and detection of coherence in the intergalactic medium (IGM) at substantially high redshift (z~3.8) and on large physical scales (~2.5 h^-1 Mpc). We perform the measurement by presenting new observations from Keck LRIS of the high redshift quasar pair PC 1643+4631A, B and their Ly-alpha absorber coincidences. This experiment extends multiple sightline quasar absorber studies to higher redshift, higher opacity, larger transverse separation, and into a regime where coherence across the IGM becomes weak and difficult to detect. We fit 222 discrete Ly-alpha absorbers to sightline A and 211 to sightline B. Relative to a Monte Carlo pairing test (using symmetric, nearest neighbor matching) the data exhibit a 4sigma excess of pairs at low velocity splitting (<150 km/s), thus detecting coherence on transverse scales of ~2.5 h^-1 Mpc. We use spectra extracted from an SPH simulation to analyze symmetric pair matching, transmission distributions as a function of redshift and compute zero-lag cross-correlations to compare with the quasar pair data. The simulations agree with the data with the same strength (~4sigma) at similarly low velocity splitting above random chance pairings. In cross-correlation tests, the simulations agree when the mean flux (as a function of redshift) is assumed to follow the prescription given by Kirkman et al. (2005). While the detection of flux correlation (measured through coincident absorbers and cross-correlation amplitude) is only marginally significant, the agreement between data and simulations is encouraging for future work in which even better quality data will provide the best insight into the overarching structure of the IGM and its understanding as shown by SPH simulations.Comment: 15 pages, 11 figures; accepted for publication in Astronomical Journa

    Simulations of AGN feedback in galaxy clusters and groups: impact on gas fractions and the Lx-T scaling relation

    Full text link
    Recently, rapid observational and theoretical progress has established that black holes (BHs) play a decisive role in the formation and evolution of individual galaxies as well as galaxy groups and clusters. In particular, there is compelling evidence that BHs vigorously interact with their surroundings in the central regions of galaxy clusters, indicating that any realistic model of cluster formation needs to account for these processes. This is also suggested by the failure of previous generations of hydrodynamical simulations without BH physics to simultaneously account for the paucity of strong cooling flows in clusters, the slope and amplitude of the observed cluster scaling relations, and the high-luminosity cut-off of central cluster galaxies. Here we use high-resolution cosmological simulations of a large cluster and group sample to study how BHs affect their host systems. We focus on two specific properties, the halo gas fraction and the X-ray luminosity-temperature scaling relation, both of which are notoriously difficult to reproduce in self-consistent hydrodynamical simulations. We show that BH feedback can solve both of these issues, bringing them in excellent agreement with observations, without alluding to the `cooling only' solution that produces unphysically bright central galaxies. By comparing a large sample of simulated AGN-heated clusters with observations, our new simulation technique should make it possible to reliably calibrate observational biases in cluster surveys, thereby enabling various high-precision cosmological studies of the dark matter and dark energy content of the universe.Comment: 4 pages, 2 figures, minor revisions, ApJL in pres

    Impedance Analysis for Oxygen Reduction in a Lithium Carbonate Melt

    Get PDF
    Oxygen reduction on a smooth gold electrode in a pure lithium carbonate melt was investigated by electrochemical impedance spectroscopy and cyclic voltammetry. The impedance data were analyzed using the Randles-Ershler equivalent circuit to determine parameters such as the charge-transfer resistance, Warburg coefficient, double-layer capacity, and uncompensated electrolyte resistance. The parameters estimated by complex plane plots and a complex nonlinear least squares method are in good agreement. Cyclic voltammetric measurements showed that oxygen reduction in a lithium carbonate melt is very rapid. A mass transfer parameter, DC0, estimated by the cyclic voltammetry concurred withthat calculated by the electrochemical impedance spectroscopy technique. The temperature dependences of the exchange current density and the product DC0 were examined, and the apparent activation energies were determined to be 121.7 ± 24.4 and 181.0 ± 7.0 kJ/mol, respectively
    • 

    corecore