11 research outputs found
A symmetry breaking mechanism for selecting the speed of relativistic solitons
We propose a mechanism for fixing the velocity of relativistic soliton based
on the breaking of the Lorentz symmetry of the sine-Gordon (SG) model. The
proposal is first elaborated for a molecular chain model, as the simple
pendulum limit of a double pendulums chain. It is then generalized to a full
class of two-dimensional field theories of the sine-Gordon type. From a
phenomenological point of view, the mechanism allows one to select the speed of
a SG soliton just by tuning elastic couplings constants and kinematical
parameters. From a fundamental, field-theoretical point of view we show that
the characterizing features of relativistic SG solitons (existence of conserved
topological charges and stability) may be still preserved even if the Lorentz
symmetry is broken and a soliton of a given speed is selected.Comment: 23 pages, no figure
Solitons in Yakushevich-like models of DNA dynamics with improved intrapair potential
The Yakushevich (Y) model provides a very simple pictures of DNA torsion
dynamics, yet yields remarkably correct predictions on certain physical
characteristics of the dynamics. In the standard Y model, the interaction
between bases of a pair is modelled by a harmonic potential, which becomes
anharmonic when described in terms of the rotation angles; here we substitute
to this different types of improved potentials, providing a more physical
description of the H-bond mediated interactions between the bases. We focus in
particular on soliton solutions; the Y model predicts the correct size of the
nonlinear excitations supposed to model the ``transcription bubbles'', and this
is essentially unchanged with the improved potential. Other features of soliton
dynamics, in particular curvature of soliton field configurations and the
Peierls-Nabarro barrier, are instead significantly changed
Propagation of twist solitons in real DNA chains
We report on numerical investigations concerning the propagation of solitons
in a real DNA chain (the Human Adenovirus 2) using a realistic model of DNA
torsional dynamics; this takes fully into account the inhomogeneities in the
real chain. We find that twist solitons propagate for considerable distances
(2-10 times their diameters) before stopping due to phonon emission. Our
results show that twist solitons may exist in real DNA chains; and on a more
general level that solitonic propagation can take place in highly inhomogeneous
media.Comment: 6 pages, 3 figure