11 research outputs found

    Towards the delineation of the ancestral eutherian genome organization: comparative genome maps of human and the African elephant (Loxodonta africana) generated by chromosome painting.

    No full text
    This study presents a whole-genome comparison of human and a representative of the Afrotherian clade, the African elephant, generated by reciprocal Zoo-FISH. An analysis of Afrotheria genomes is of special interest, because recent DNA sequence comparisons identify them as the oldest placental mammalian clade. Complete sets of whole-chromosome specific painting probes for the African elephant and human were constructed by degenerate oligonucleotide-primed PCR amplification of flow-sorted chromosomes. Comparative genome maps are presented based on their hybridization patterns. These maps show that the elephant has a moderately rearranged chromosome complement when compared to humans. The human paint probes identified 53 evolutionary conserved segments on the 27 autosomal elephant chromosomes and the X chromosome. Reciprocal experiments with elephant probes delineated 68 conserved segments in the human genome. The comparison with a recent aardvark and elephant Zoo-FISH study delineates new chromosomal traits which link the two Afrotherian species phylogenetically. In the absence of any morphological evidence the chromosome painting data offer the first non-DNA sequence support for an Afrotherian clade. The comparative human and elephant genome maps provide new insights into the karyotype organization of the proto-afrotherian, the ancestor of extant placental mammals, which most probably consisted of 2n=46 chromosomes

    Reducing YAP expression in Pkd1

    No full text
    The Hippo pathway is a highly conserved signalling route involved in organ size regulation. The final effectors of this pathway are two transcriptional coactivators, yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (WWTR1 or TAZ). Previously, we showed aberrant activation of the Hippo pathway in autosomal-dominant polycystic kidney disease (ADPKD), suggesting that YAP/TAZ might play a role in disease progression. Using antisense oligonucleotides (ASOs) in a mouse model for ADPKD, we efficiently down-regulatedYaplevels in the kidneys. However, we did not see any effect on cyst formation or growth. Moreover, the expression of YAP/TAZ downstream targets was not changed, while WNT and TGF-beta pathways' downstream targetsMyc,Acta2andVimwere more expressed afterYapknockdown. Overall, our data indicate that reducing YAP levels is not a viable strategy to modulate PKD progression.Functional Genomics of Systemic Disorder

    Broad phenotype of cysteine-altering NOTCH3 variants in UK Biobank: CADASIL to nonpenetrance

    No full text
    To determine the small vessel disease spectrum associated with cysteine-altering NOTCH3 variants in community-dwelling individuals by analyzing the clinical and neuroimaging features of UK Biobank participants harboring such variants. The exome and genome sequencing datasets of the UK Biobank (n = 50,000) and cohorts of cognitively healthy elderly (n = 751) were queried for cysteine-altering NOTCH3 variants. Brain MRIs of individuals harboring such variants were scored according to Standards for Reporting Vascular Changes on Neuroimaging criteria, and clinical information was extracted with ICD-10 codes. Clinical and neuroimaging data were compared to age- and sex-matched UK Biobank controls and clinically diagnosed patients from the Dutch cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) registry. We identified 108 individuals harboring a cysteine-altering NOTCH3 variant (2.2 of 1,000), of whom 75% have a variant that has previously been reported in CADASIL pedigrees. Almost all variants were located in 1 of the NOTCH3 protein epidermal growth factor-like repeat domains 7 to 34. White matter hyperintensity lesion load was higher in individuals with NOTCH3 variants than in controls (p = 0.006) but lower than in patients with CADASIL with the same variants (p &lt; 0.001). Almost half of the 24 individuals with brain MRI had a Fazekas score of 0 or 1 up to age 70 years. There was no increased risk of stroke. Although community-dwelling individuals harboring a cysteine-altering NOTCH3 variant have a higher small vessel disease MRI burden than controls, almost half have no MRI abnormalities up to age 70 years. This shows that NOTCH3 cysteine altering variants are associated with an extremely broad phenotypic spectrum, ranging from CADASIL to nonpenetrance.</p

    In vitro 3D phenotypic drug screen identifies celastrol as an effective in vivo inhibitor of polycystic kidney disease

    Get PDF
    Polycystic kidney disease (PKD) is a prevalent genetic disorder, characterized by the formation of kidney cysts that progressively lead to kidney failure. The currently available drug tolvaptan is not well tolerated by all patients and there remains a strong need for alternative treatments. The signaling rewiring in PKD that drives cyst formation is highly complex and not fully understood. As a consequence, the effects of drugs are sometimes difficult to predict. We previously established a high throughput microscopy phenotypic screening method for quantitative assessment of renal cyst growth. Here, we applied this 3D cyst growth phenotypic assay and screened 2320 small drug-like molecules, including approved drugs. We identified 81 active molecules that inhibit cyst growth. Multi-parametric phenotypic profiling of the effects on 3D cultured cysts discriminated molecules that showed preferred pharmacological effects above genuine toxicological properties. Celastrol, a triterpenoid from Tripterygium Wilfordii, was identified as a potent inhibitor of cyst growth in vitro. In an in vivo iKspCre-Pkd1lox,lox mouse model for PKD, celastrol inhibited the growth of renal cysts and maintained kidney function

    Broad phenotype of cysteine-altering NOTCH3 variants in UK Biobank: CADASIL to nonpenetrance

    No full text
    To determine the small vessel disease spectrum associated with cysteine-altering NOTCH3 variants in community-dwelling individuals by analyzing the clinical and neuroimaging features of UK Biobank participants harboring such variants. The exome and genome sequencing datasets of the UK Biobank (n = 50,000) and cohorts of cognitively healthy elderly (n = 751) were queried for cysteine-altering NOTCH3 variants. Brain MRIs of individuals harboring such variants were scored according to Standards for Reporting Vascular Changes on Neuroimaging criteria, and clinical information was extracted with ICD-10 codes. Clinical and neuroimaging data were compared to age- and sex-matched UK Biobank controls and clinically diagnosed patients from the Dutch cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) registry. We identified 108 individuals harboring a cysteine-altering NOTCH3 variant (2.2 of 1,000), of whom 75% have a variant that has previously been reported in CADASIL pedigrees. Almost all variants were located in 1 of the NOTCH3 protein epidermal growth factor-like repeat domains 7 to 34. White matter hyperintensity lesion load was higher in individuals with NOTCH3 variants than in controls (p = 0.006) but lower than in patients with CADASIL with the same variants (p &lt; 0.001). Almost half of the 24 individuals with brain MRI had a Fazekas score of 0 or 1 up to age 70 years. There was no increased risk of stroke. Although community-dwelling individuals harboring a cysteine-altering NOTCH3 variant have a higher small vessel disease MRI burden than controls, almost half have no MRI abnormalities up to age 70 years. This shows that NOTCH3 cysteine altering variants are associated with an extremely broad phenotypic spectrum, ranging from CADASIL to nonpenetrance.Pattern Recognition and BioinformaticsIntelligent System

    Broad phenotype of cysteine-altering NOTCH3 variants in UK Biobank

    Get PDF
    Objective To determine the small vessel disease spectrum associated with cysteine-altering NOTCH3 variants in community-dwelling individuals by analyzing the clinical and neuroimaging features of UK Biobank participants harboring such variants. Methods The exome and genome sequencing datasets of the UK Biobank (n = 50,000) and cohorts of cognitively healthy elderly (n = 751) were queried for cysteine-altering NOTCH3 variants. Brain MRIs of individuals harboring such variants were scored according to Standards for Reporting Vascular Changes on Neuroimaging criteria, and clinical information was extracted with ICD-10 codes. Clinical and neuroimaging data were compared to age- and sex-matched UK Biobank controls and clinically diagnosed patients from the Dutch cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) registry. Results We identified 108 individuals harboring a cysteine-altering NOTCH3 variant (2.2 of 1,000), of whom 75% have a variant that has previously been reported in CADASIL pedigrees. Almost all variants were located in 1 of the NOTCH3 protein epidermal growth factor–like repeat domains 7 to 34. White matter hyperintensity lesion load was higher in individuals with NOTCH3 variants than in controls (p = 0.006) but lower than in patients with CADASIL with the same variants (p < 0.001). Almost half of the 24 individuals with brain MRI had a Fazekas score of 0 or 1 up to age 70 years. There was no increased risk of stroke. Conclusions Although community-dwelling individuals harboring a cysteine-altering NOTCH3 variant have a higher small vessel disease MRI burden than controls, almost half have no MRI abnormalities up to age 70 years. This shows that NOTCH3 cysteine altering variants are associated with an extremely broad phenotypic spectrum, ranging from CADASIL to nonpenetrance

    Naturally occurring NOTCH3 exon skipping attenuates NOTCH3 protein aggregation and disease severity in CADASIL patients

    No full text
    CADASIL is a vascular protein aggregation disorder caused by cysteine-altering NOTCH3 variants, leading to mid-adult-onset stroke and dementia. Here, we report individuals with a cysteine-altering NOTCH3 variant that induces exon 9 skipping, mimicking therapeutic NOTCH3 cysteine correction. The index came to our attention after a coincidental finding on a commercial screening MRI, revealing white matter hyperintensities. A heterozygous NOTCH3 c.1492G>T, p.Gly498Cys variant, was identified using a gene panel, which was also present in four first- and second-degree relatives. Although some degree of white matter hyperintensities was present on MRI in all family members with the NOTCH3 variant, the CADASIL phenotype was mild, as none had lacunes on MRI and there was no disability or cognitive impairment above the age of 60 years. RT-PCR and Sanger sequencing analysis on patient fibroblast RNA revealed that exon 9 was absent from the majority of NOTCH3 transcripts of the mutant allele, effectively excluding the mutation. NOTCH3 aggregation was assessed in skin biopsies using electron microscopy and immunohistochemistry and did not show granular osmiophilic material and only very mild NOTCH3 staining. For purposes of therapeutic translatability, we show that, in cell models, exon 9 exclusion can be obtained using antisense-mediated exon skipping and CRISPR/Cas9-mediated genome editing. In conclusion, this study provides the first in-human evidence that cysteine corrective NOTCH3 exon skipping is associated with less NOTCH3 aggregation and an attenuated phenotype, justifying further therapeutic development of NOTCH3 cysteine correction for CADASIL
    corecore