35 research outputs found

    Markov model and markers of small cell lung cancer: assessing the influence of reversible serum NSE, CYFRA 21-1 and TPS levels on prognosis

    Get PDF
    High serum NSE and advanced tumour stage are well-known negative prognostic determinants of small cell lung cancer (SCLC) when observed at presentation. However, such variables are reversible disease indicators as they can change during the course of therapy. The relationship between risk of death and marker level and disease state during treatment of SCLC chemotherapy is not known. A total of 52 patients with SCLC were followed during cisplatin-based chemotherapy (the median number of tumour status and marker level assessments was 4). The time-homogeneous Markov model was used in order to analyse separately the prognostic significance of change in the state of the serum marker level (NSE, CYFRA 21-1, TPS) or the change in tumour status. In this model, transition rate intensities were analysed according to three different states: alive with low marker level (state 0), alive with high marker level (state 1) and dead (absorbing state). The model analysing NSE levels showed that the mean time to move out of state ‘high marker level’ was short (123 days). There was a 44% probability of the opposite reversible state ‘low marker level’ being reached, which demonstrated the reversible property of the state ‘high marker level’. The relative risk of death from this state ‘high marker level’ was about 2.24 times greater in comparison with that of state 0 ‘low marker level’ (Wald's test; P < 0.01). For patients in state ‘high marker level’ at time of sampling, the probability of death increased dramatically, a transition explaining the rapid decrease in the probability of remaining stationary at this state. However, a non-nil probability to change from state 1 ‘high marker level’ to the opposite transient level, state 0 ‘low marker level’, was observed suggesting that, however infrequently, patients in state 1 ‘high marker level’ might still return to state 0 ‘low marker level’. Almost similar conclusions can be drawn regarding the three-state model constructed using the tumour response status. For the two cytokeratin markers, the Markov model suggests the lack of a true reversible property of these variables as there was only a very weak probability of a patient returning to state ‘low marker level’ once having entered state ‘high marker level’. In conclusion, The Markov model suggests that the observation of an increase in serum NSE level or a lack of response of the disease at any time during follow-up (according to the homogeneous assumption) was strongly associated with a worse prognosis but that the reversion to a low mortality risk state remains possible. © 1999 Cancer Research Campaig

    Aneuploidy and prognosis of non-small-cell lung cancer: a meta-analysis of published data

    Get PDF
    In lung cancer, DNA content abnormalities have been described as a heterogeneous spectrum of impaired tumour cell DNA histogram patterns. They are merged into the common term of aneuploidy and probably reflect a high genotypic instability. In non-small-cell lung cancer, the negative effect of aneuploidy has been a subject of controversy inasmuch as studies aimed at determining the survival–DNA content relationship have reported conflicting results. We made a meta-analysis of published studies aimed at determining the prognostic effect of aneuploidy in surgically resected non-small-cell lung cancer. 35 trials have been identified in the literature. A comprehensive collection of data has been constructed taking into account the following parameters: quality of specimen, DNA content assessment method, aneuploidy definition, histology and stage grouping, quality of surgical resection and demographic characteristics of the analysed population. Among the 4033 assessable patients, 2626 suffered from non-small-cell lung cancer with aneuploid DNA content (overall frequency of aneuploidy: 0.65; 95% CI: (0.64–0.67)). The DerSimonian and Laird method was used to estimate the size effects and the Peto and Yusuf method was used in order to generate the odds ratios (OR) of reduction in risk of death for patients affected by a nearly diploid (non-aneuploid) non-small-cell lung cancer. Survivals following surgical resection, from 1 to 5 years, were chosen as the end-points of our meta-analysis. Patients suffering from a nearly diploid tumour benefited from a significant reduction in risk of death at 1, 2, 3 and 4 years with respective OR: 0.51, 0.51, 0.45 and 0.67 (P< 10−4for each end-point). 5 years after resection, the reduction of death was of lesser magnitude: OR: 0.87 (P = 0.08). The test for overall statistical heterogeneity was conventionally significant (P< 0.01) for all 5 end-points, however. None of the recorded characteristics of the studies could explain this phenomenon precluding a subset analysis. Therefore, the DerSimonian and Laird method was applied inasmuch as this method allows a correction for heterogeneity. This method demonstrated an increase in survival at 1, 2, 3, 4 and 5 years for patients with diploid tumours with respective size effects of 0.11, 0.15, 0.20, 0.20 and 0.21 (value taking into account the correction for heterogeneity;P< 10−4for each end-point). Patients who benefit from a surgical resection for non-small-cell lung cancer with aneuploid DNA content prove to have a higher risk of death. This negative prognostic factor decreases the probability of survival by 11% at one year, a negative effect deteriorating up to 21% at 5 years following surgery. © 2001 Cancer Research Campaign http://www.bjcancer.co

    A new simplified comorbidity score as a prognostic factor in non-small-cell lung cancer patients: description and comparison with the Charlson's index

    Get PDF
    Treatment of non-small-cell lung cancer (NSCLC) might take into account comorbidities as an important variable. The aim of this study was to generate a new simplified comorbidity score (SCS) and to determine whether or not it improves the possibility of predicting prognosis of NSCLC patients. A two-step methodology was used. Step 1: An SCS was developed and its prognostic value was compared with classical prognostic determinants in the outcome of 735 previously untreated NSCLC patients. Step 2: the SCS reliability as a prognostic determinant was tested in a different population of 136 prospectively accrued NSCLC patients with a formal comparison between SCS and the classical Charlson comorbidity index (CCI). Prognosis was analysed using both univariate and multivariate (Cox model) statistics. The SCS summarised the following variables: tobacco consumption, diabetes mellitus and renal insufficiency (respective weightings 7, 5 and 4), respiratory, neoplastic and cardiovascular comorbidities and alcoholism (weighting=1 for each item). In step 1, aside from classical variables such as age, stage of the disease and performance status, SCS was a statistically significant prognostic variable in univariate analyses. In the Cox model weight loss, stage grouping, performance status and SCS were independent determinants of a poor outcome. There was a trend towards statistical significance for age (P=0.08) and leucocytes count (P=0.06). In Step 2, both SCS and well-known prognostic variables were found as significant determinants in univariate analyses. There was a trend towards a negative prognostic effect for CCI. In multivariate analysis, stage grouping, performance status, histology, leucocytes, lymphocytes, lactate dehydrogenase, CYFRA 21-1 and SCS were independent determinants of a poor prognosis. CCI was removed from the Cox model. In conclusion, the SCS, constructed as an independent prognostic factor in a large NSCLC patient population, is validated in another prospective population and appears more informative than the CCI in predicting NSCLC patient outcome
    corecore