77 research outputs found

    Tuning the atomic and domain structure of epitaxial films of multiferroic BiFeO3

    Get PDF
    Recent works have shown that the domain walls of room-temperature multiferroic BiFeO3 (BFO) thin films can display distinct and promising functionalities. It is thus important to understand the mechanisms underlying domain formation in these films. High-resolution x-ray diffraction and piezo-force microscopy, combined with first-principles simulations, have allowed us to characterize both the atomic and domain structure of BFO films grown under compressive strain on (001)-SrTiO3, as a function of thickness. We derive a twining model that describes the experimental observations and explains why the 71o domain walls are the ones commonly observed in these films. This understanding provides us with a new degree of freedom to control the structure and, thus, the properties of BiFeO3 thin films.Comment: RevTeX; 4 two-column pages; 4 color figures. Figure 2b does not seem to display well. A proper version can be found in the source fil

    Surmounting collectively oscillating bottlenecks

    Full text link
    We study the collective escape dynamics of a chain of coupled, weakly damped nonlinear oscillators from a metastable state over a barrier when driven by a thermal heat bath in combination with a weak, globally acting periodic perturbation. Optimal parameter choices are identified that lead to a drastic enhancement of escape rates as compared to a pure noise-assisted situation. We elucidate the speed-up of escape in the driven Langevin dynamics by showing that the time-periodic external field in combination with the thermal fluctuations triggers an instability mechanism of the stationary homogeneous lattice state of the system. Perturbations of the latter provided by incoherent thermal fluctuations grow because of a parametric resonance, leading to the formation of spatially localized modes (LMs). Remarkably, the LMs persist in spite of continuously impacting thermal noise. The average escape time assumes a distinct minimum by either tuning the coupling strength and/or the driving frequency. This weak ac-driven assisted escape in turn implies a giant speed of the activation rate of such thermally driven coupled nonlinear oscillator chains

    Hamiltonian Hopf bifurcations in the discrete nonlinear Schr\"odinger trimer: oscillatory instabilities, quasiperiodic solutions and a 'new' type of self-trapping transition

    Full text link
    Oscillatory instabilities in Hamiltonian anharmonic lattices are known to appear through Hamiltonian Hopf bifurcations of certain time-periodic solutions of multibreather type. Here, we analyze the basic mechanisms for this scenario by considering the simplest possible model system of this kind where they appear: the three-site discrete nonlinear Schr\"odinger model with periodic boundary conditions. The stationary solution having equal amplitude and opposite phases on two sites and zero amplitude on the third is known to be unstable for an interval of intermediate amplitudes. We numerically analyze the nature of the two bifurcations leading to this instability and find them to be of two different types. Close to the lower-amplitude threshold stable two-frequency quasiperiodic solutions exist surrounding the unstable stationary solution, and the dynamics remains trapped around the latter so that in particular the amplitude of the originally unexcited site remains small. By contrast, close to the higher-amplitude threshold all two-frequency quasiperiodic solutions are detached from the unstable stationary solution, and the resulting dynamics is of 'population-inversion' type involving also the originally unexcited site.Comment: 25 pages, 11 figures, to be published in J. Phys. A: Math. Gen. Revised and shortened version with few clarifying remarks adde

    Pattern formation in directional solidification under shear flow. I: Linear stability analysis and basic patterns

    Full text link
    An asymptotic interface equation for directional solidification near the absolute stabiliy limit is extended by a nonlocal term describing a shear flow parallel to the interface. In the long-wave limit considered, the flow acts destabilizing on a planar interface. Moreover, linear stability analysis suggests that the morphology diagram is modified by the flow near the onset of the Mullins-Sekerka instability. Via numerical analysis, the bifurcation structure of the system is shown to change. Besides the known hexagonal cells, structures consisting of stripes arise. Due to its symmetry-breaking properties, the flow term induces a lateral drift of the whole pattern, once the instability has become active. The drift velocity is measured numerically and described analytically in the framework of a linear analysis. At large flow strength, the linear description breaks down, which is accompanied by a transition to flow-dominated morphologies, described in a companion paper. Small and intermediate flows lead to increased order in the lattice structure of the pattern, facilitating the elimination of defects. Locally oscillating structures appear closer to the instability threshold with flow than without.Comment: 20 pages, Latex, accepted for Physical Review

    IUPAC critical evaluation of the rotational-vibrational spectra of water vapor, Part III: Energy levels and transition wavenumbers for H2 16O

    Get PDF
    This is the third of a series of articles reporting critically evaluated rotational–vibrational line positions, transition intensities, and energy levels, with associated critically reviewed labels and uncertainties, for all the main isotopologues of water. This paper presents experimental line positions, experimental-quality energy levels, and validated labels for rotational–vibrational transitions of the most abundant isotopologue of water, H216O. The latest version of the MARVEL (Measured Active Rotational–Vibrational Energy Levels) line-inversion procedure is used to determine the rovibrational energy levels of the electronic ground state of H216O from experimentally measured lines, together with their self-consistent uncertainties, for the spectral region up to the first dissociation limit. The spectroscopic network of H216O containstwo components, an ortho (o) and a para (p) one. For o-H216O and p-H216O, experimentally measured, assigned, and labeled transitions were analyzed from more than 100 sources. The measured lines come from one-photon spectra recorded at room temperature in absorption, from hot samples with temperatures up to 3000 K recorded in emission, and from multiresonance excitation spectra which sample levels up to dissociation. The total number of transitions considered is 184 667 of which 182 156 are validated: 68 027 between para states and 114 129 ortho ones. These transitions give rise to 18 486 validated energy levels, of which 10 446 and 8040 belong to o-H216O and p-H216O, respectively. The energy levels, including their labeling with approximate normal-mode and rigid-rotor quantum numbers, have been checked against ones determined from accurate variational nuclear motion computations employing exact kinetic energy operators as well as against previous compilations of energy levels. The extensive list of MARVEL lines and levels obtained are deposited in the supplementary data of this paper, as well as in a distributed information system applied to water, W@DIS, where they can easily be retrieved

    Enhancement of Direct Piezoelectric Properties of Domain-Engineered (100) BiFeO 3

    No full text

    Trends in the prescription of systemic anticancer therapy and mortality among patients with advanced non-small cell lung cancer: a real-world retrospective observational cohort study from the I-O optimise initiative

    No full text
    Objectives To assess how a decade of developments in systematic anticancer therapy (SACT) for advanced non-small cell lung cancer (NSCLC) affected overall survival (OS) in a large UK University Hospital.Design Real-world retrospective observational cohort study using existing data recorded in electronic medical records.Setting A large National Health Service (NHS) university teaching hospital serving 800 000 people living in a diverse metropolitan area of the UK.Participants 2119 adults diagnosed with advanced NSCLC (tumour, node, metastasis stage IIIB or IV) between 2007 and 2017 at Leeds Teaching Hospitals NHS Trust.Main outcomes and measures OS following diagnosis and the analysis of factors associated with receiving SACT.Results Median OS for all participants was 2.9 months, increasing for the SACT-treated subcohort from 8.4 months (2007–2012) to 9.1 months (2013–2017) (p=0.02); 1-year OS increased from 33% to 39% over the same period for the SACT-treated group. Median OS for the untreated subcohort was 1.6 months in both time periods. Overall, 30.6% (648/2119) patients received SACT; treatment rates increased from 28.6% (338/1181) in 2007–2012 to 33.0% (310/938) in 2013–2017 (p=0.03). Age and performance status were independent predictors for SACT treatment; advanced age and higher performance status were associated with lower SACT treatment rates.Conclusion Although developments in SACT during 2007–2017 correspond to some changes in survival for treated patients with advanced NSCLC, treatment rates remain low and the prognosis for all patients remains poor
    • …
    corecore