1,108 research outputs found

    DWPF MATERIALS EVALUATION SUMMARY REPORT

    Full text link
    To better ensure the reliability of the Defense Waste Processing Facility (DWPF) remote canyon process equipment, a materials evaluation program was performed as part of the overall startup test program. Specific test programs included FA-04 ('Process Vessels Erosion/Corrosion Studies') and FA-05 (melter inspection). At the conclusion of field testing, Test Results Reports were issued to cover the various test phases. While these reports completed the startup test requirements, DWPF-Engineering agreed to compile a more detailed report which would include essentially all of the materials testing programs performed at DWPF. The scope of the materials evaouation programs included selected equipment from the Salt Process Cell (SPC), Chemical Process Cell (CPC), Melt Cell, Canister Decon Cell (CDC), and supporting facilities. The program consisted of performing pre-service baseline inspections (work completed in 1992) and follow-up inspections after completion of the DWPF cold chemical runs. Process equipment inspected included: process vessels, pumps, agitators, coils, jumpers, and melter top head components. Various NDE (non-destructive examination) techniques were used during the inspection program, including: ultrasonic testing (UT), visual (direct or video probe), radiography, penetrant testing (PT), and dimensional analyses. Finally, coupon racks were placed in selected tanks in 1992 for subsequent removal and corrosion evaluation after chemical runs

    Generalized iterated wreath products of symmetric groups and generalized rooted trees correspondence

    Full text link
    Consider the generalized iterated wreath product Sr1≀…≀SrkS_{r_1}\wr \ldots \wr S_{r_k} of symmetric groups. We give a complete description of the traversal for the generalized iterated wreath product. We also prove an existence of a bijection between the equivalence classes of ordinary irreducible representations of the generalized iterated wreath product and orbits of labels on certain rooted trees. We find a recursion for the number of these labels and the degrees of irreducible representations of the generalized iterated wreath product. Finally, we give rough upper bound estimates for fast Fourier transforms.Comment: 18 pages, to appear in Advances in the Mathematical Sciences. arXiv admin note: text overlap with arXiv:1409.060

    Resonant Cyclotron Radiation Transfer Model Fits to Spectra from Gamma-Ray Burst GRB870303

    Get PDF
    We demonstrate that models of resonant cyclotron radiation transfer in a strong field (i.e. cyclotron scattering) can account for spectral lines seen at two epochs, denoted S1 and S2, in the Ginga data for GRB870303. Using a generalized version of the Monte Carlo code of Wang et al. (1988,1989b), we model line formation by injecting continuum photons into a static plane-parallel slab of electrons threaded by a strong neutron star magnetic field (~ 10^12 G) which may be oriented at an arbitrary angle relative to the slab normal. We examine two source geometries, which we denote "1-0" and "1-1," with the numbers representing the relative electron column densities above and below the continuum photon source plane. We compare azimuthally symmetric models, i.e. models in which the magnetic field is parallel to the slab normal, with models having more general magnetic field orientations. If the bursting source has a simple dipole field, these two model classes represent line formation at the magnetic pole, or elsewhere on the stellar surface. We find that the data of S1 and S2, considered individually, are consistent with both geometries, and with all magnetic field orientations, with the exception that the S1 data clearly favor line formation away from a polar cap in the 1-1 geometry, with the best-fit model placing the line-forming region at the magnetic equator. Within both geometries, fits to the combined (S1+S2) data marginally favor models which feature equatorial line formation, and in which the observer's orientation with respect to the slab changes between the two epochs. We interpret this change as being due to neutron star rotation, and we place limits on the rotation period.Comment: LaTeX2e (aastex.cls included); 45 pages text, 17 figures (on 21 pages); accepted by ApJ (to be published 1 Nov 1999, v. 525

    Very-high-energy gamma radiation associated with the unshocked wind of the Crab pulsar

    Full text link
    We show that the relativistic wind in the Crab pulsar, which is commonly thought to be invisible in the region upstream of the termination shock at R < 0.1 pc, in fact could be directly observed through its inverse Compton gamm-ray emission. The search for such specific component of radiation in the gamma-ray spectrum of the Crab can provide unique information about the unshocked pulsar wind that is not accessible at other wavelengths.Comment: 11 pages, 11 figures, to appear in one of the April issues of MNRA

    Genetic Variants of the Renin Angiotensin System: Effects on Atherosclerosis in Experimental Models and Humans

    Get PDF
    The renin angiotensin system (RAS) has profound effects on atherosclerosis development in animal models, which is partially complimented by evidence in the human disease. Although angiotensin II was considered to be the principal effector of the RAS, a broader array of bioactive angiotensin peptides have been identified that have increased the scope of enzymes and receptors in the RAS. Genetic interruption of the synthesis of these peptides has not been extensively performed in experimental or human studies. A few studies demonstrate that interruption of a component of the angiotensin peptide synthesis pathway reduces experimental lesion formation. The evidence in human studies has not been consistent. Conversely, genetic manipulation of the RAS receptors has demonstrated that AT1a receptors are profoundly involved in experimental atherosclerosis. Few studies have reported links of genetic variants of angiotensin II receptors to human atherosclerotic diseases. Further genetic studies are needed to define the role of RAS in atherosclerosis

    Unified Classical and Quantum Radiation Mechanism for Ultra-Relativistic Electrons in Curved and Inhomogeneous Magnetic Fields

    Get PDF
    We analyze the general radiation emission mechanism from a charged particle moving in a curved inhomogeneous magnetic field. The consideration of the gradient makes the curved vacuum magnetic field compatible with the Maxwell equations and adds a non-trivial term to the transverse drift velocity and, consequently, to the general radiation spectrum. To obtain the radiation spectrum in the classical domain a general expression for the spectral distribution and characteristic frequency of an electron in arbitrary motion is derived by using Schwinger's method. The radiation patterns of the ultrarelativistic electron are represented in terms of the acceleration of the particle. The same results can be obtained by considering that the motion of the electron can be formally described as an evolution due to magnetic and electric forces. By defining an effective electromagnetic field, which combines the magnetic field with the fictitious electric field associated to the curvature and drift motion, one can obtain all the physical characteristics of the radiation by replacing the constant magnetic field with the effective field. The power, angular distribution and spectral distribution of all three components (synchrotron, curvature and gradient) of the radiation are considered in both classical and quantum domain in the framework of this unified formalism. In the quantum domain the proposed approach allows the study of the effects of the inhomogeneities and curvature of the magnetic field on the radiative transitions rates of electrons between low-lying Landau levels and the ground state.Comment: 28 pages, 33 figure

    Search for nucleon decays with EXO-200

    Get PDF
    A search for instability of nucleons bound in 136^{136}Xe nuclei is reported with 223 kg⋅\cdotyr exposure of 136^{136}Xe in the EXO-200 experiment. Lifetime limits of 3.3×1023\times 10^{23} and 1.9×1023\times 10^{23} yrs are established for nucleon decay to 133^{133}Sb and 133^{133}Te, respectively. These are the most stringent to date, exceeding the prior decay limits by a factor of 9 and 7, respectively
    • …
    corecore