1,073 research outputs found

    BL Lac X-ray Spectra: simpler than we thought

    Full text link
    We report results from {\it XMM-Newton} observations of thirteen X-ray bright BL Lacertae objects, selected from the {\it Einstein} Slew Survey sample. The spectra are generally well fit by power-law models, with four objects having hard (α<1;Fννα\alpha<1; F_\nu \propto \nu^{-\alpha}) spectra that indicates synchrotron peaks at >5>5 keV. None of our spectra show line features, indicating that soft X-ray absorption ``notches'' must be rare amongst BL Lacs, rather than common or ubiquitous as had previously been asserted. We find significant curvature in most of the spectra. This curvature is almost certainly intrinsic, as it appears nearly constant from 0.5 to 6 keV, an observation which is inconsistent with the small columns seen in these sources.Comment: 4 pages, 1 figure; to be published in proceedings of the Cozumel meeting on "Multiwavelength Surveys for AGN", Cozumel 200

    Genetic Variants of the Renin Angiotensin System: Effects on Atherosclerosis in Experimental Models and Humans

    Get PDF
    The renin angiotensin system (RAS) has profound effects on atherosclerosis development in animal models, which is partially complimented by evidence in the human disease. Although angiotensin II was considered to be the principal effector of the RAS, a broader array of bioactive angiotensin peptides have been identified that have increased the scope of enzymes and receptors in the RAS. Genetic interruption of the synthesis of these peptides has not been extensively performed in experimental or human studies. A few studies demonstrate that interruption of a component of the angiotensin peptide synthesis pathway reduces experimental lesion formation. The evidence in human studies has not been consistent. Conversely, genetic manipulation of the RAS receptors has demonstrated that AT1a receptors are profoundly involved in experimental atherosclerosis. Few studies have reported links of genetic variants of angiotensin II receptors to human atherosclerotic diseases. Further genetic studies are needed to define the role of RAS in atherosclerosis

    Life in Hot Carbon Monoxide: The Complete Genome Sequence of Carboxydothermus hydrogenoformans Z-2901

    Get PDF
    We report here the sequencing and analysis of the genome of the thermophilic bacterium Carboxydothermus hydrogenoformans Z-2901. This species is a model for studies of hydrogenogens, which are diverse bacteria and archaea that grow anaerobically utilizing carbon monoxide (CO) as their sole carbon source and water as an electron acceptor, producing carbon dioxide and hydrogen as waste products. Organisms that make use of CO do so through carbon monoxide dehydrogenase complexes. Remarkably, analysis of the genome of C. hydrogenoformans reveals the presence of at least five highly differentiated anaerobic carbon monoxide dehydrogenase complexes, which may in part explain how this species is able to grow so much more rapidly on CO than many other species. Analysis of the genome also has provided many general insights into the metabolism of this organism which should make it easier to use it as a source of biologically produced hydrogen gas. One surprising finding is the presence of many genes previously found only in sporulating species in the Firmicutes Phylum. Although this species is also a Firmicutes, it was not known to sporulate previously. Here we show that it does sporulate and because it is missing many of the genes involved in sporulation in other species, this organism may serve as a “minimal” model for sporulation studies. In addition, using phylogenetic profile analysis, we have identified many uncharacterized gene families found in all known sporulating Firmicutes, but not in any non-sporulating bacteria, including a sigma factor not known to be involved in sporulation previously

    Strong laser fields as a probe for fundamental physics

    Full text link
    Upcoming high-intensity laser systems will be able to probe the quantum-induced nonlinear regime of electrodynamics. So far unobserved QED phenomena such as the discovery of a nonlinear response of the quantum vacuum to macroscopic electromagnetic fields can become accessible. In addition, such laser systems provide for a flexible tool for investigating fundamental physics. Primary goals consist in verifying so far unobserved QED phenomena. Moreover, strong-field experiments can search for new light but weakly interacting degrees of freedom and are thus complementary to accelerator-driven experiments. I review recent developments in this field, focusing on photon experiments in strong electromagnetic fields. The interaction of particle-physics candidates with photons and external fields can be parameterized by low-energy effective actions and typically predict characteristic optical signatures. I perform first estimates of the accessible new-physics parameter space of high-intensity laser facilities such as POLARIS and ELI.Comment: 7 pages, Key Lecture at the ELI Workshop and School on "Fundamental Physics with Ultra-High Fields", 9 September - 2 October 2008 at Frauenworth Monastery, German

    Evolutionary Toggling of Vpx/Vpr Specificity Results in Divergent Recognition of the Restriction Factor SAMHD1

    Get PDF
    SAMHD1 is a host restriction factor that blocks the ability of lentiviruses such as HIV-1 to undergo reverse transcription in myeloid cells and resting T-cells. This restriction is alleviated by expression of the lentiviral accessory proteins Vpx and Vpr (Vpx/Vpr), which target SAMHD1 for proteasome-mediated degradation. However, the precise determinants within SAMHD1 for recognition by Vpx/Vpr remain unclear. Here we show that evolution of Vpx/Vpr in primate lentiviruses has caused the interface between SAMHD1 and Vpx/Vpr to alter during primate lentiviral evolution. Using multiple HIV-2 and SIV Vpx proteins, we show that Vpx from the HIV-2 and SIVmac lineage, but not Vpx from the SIVmnd2 and SIVrcm lineage, require the C-terminus of SAMHD1 for interaction, ubiquitylation, and degradation. On the other hand, the N-terminus of SAMHD1 governs interactions with Vpx from SIVmnd2 and SIVrcm, but has little effect on Vpx from HIV-2 and SIVmac. Furthermore, we show here that this difference in SAMHD1 recognition is evolutionarily dynamic, with the importance of the N- and C-terminus for interaction of SAMHD1 with Vpx and Vpr toggling during lentiviral evolution. We present a model to explain how the head-to-tail conformation of SAMHD1 proteins favors toggling of the interaction sites by Vpx/Vpr during this virus-host arms race. Such drastic functional divergence within a lentiviral protein highlights a novel plasticity in the evolutionary dynamics of viral antagonists for restriction factors during lentiviral adaptation to its hosts. © 2013 Fregoso et al

    Investigation of radioactivity-induced backgrounds in EXO-200

    Full text link
    The search for neutrinoless double-beta decay (0{\nu}{\beta}{\beta}) requires extremely low background and a good understanding of their sources and their influence on the rate in the region of parameter space relevant to the 0{\nu}{\beta}{\beta} signal. We report on studies of various {\beta}- and {\gamma}-backgrounds in the liquid- xenon-based EXO-200 0{\nu}{\beta}{\beta} experiment. With this work we try to better understand the location and strength of specific background sources and compare the conclusions to radioassay results taken before and during detector construction. Finally, we discuss the implications of these studies for EXO-200 as well as for the next-generation, tonne-scale nEXO detector.Comment: 9 pages, 7 figures, 3 table
    corecore