7 research outputs found

    Baseline Tumor Size Is an Independent Prognostic Factor for Overall Survival in Patients With Melanoma Treated With Pembrolizumab

    No full text
    Purpose: The purpose of this study was to assess the association of baseline tumor size (BTS) with other baseline clinical factors and outcomes in pembrolizumab-treated patients with advanced melanoma in KEYNOTE-001 (NCT01295827). Experimental Design: BTS was quantified by adding the sum of the longest dimensions of all measurable baseline target lesions. BTS as a dichotomous and continuous variable was evaluated with other baseline factors using logistic regression for objective response rate (ORR) and Cox regression for overall survival (OS). Nominal P values with no multiplicity adjustment describe the strength of observed associations. Results: Per central review by RECIST v1.1, 583 of 655 patients had baseline measurable disease and were included in this post hoc analysis. Median BTS was 10.2 cm (range, 1–89.5). Larger median BTS was associated with Eastern Cooperative Oncology Group performance status 1, elevated lactate dehydrogenase (LDH), stage M1c disease, and liver metastases (with or without any other sites; all P ≤ 0.001). In univariate analyses, BTS below the median was associated with higher ORR (44% vs. 23%; P Conclusions: BTS is associated with many other baseline clinical factors but is also independently prognostic of survival in pembrolizumab-treated patients with advanced melanoma. FWN – Publicaties zonder aanstelling Universiteit Leide

    A cellular automata model to investigate immune cell-tumor cell interactions in growing tumors in two spatial dimensions

    No full text
    We develop a hybrid cellular automata model to describe the effect of the immune system and chemokines on a growing tumor. The hybrid cellular automata model consists of partial differential equations to model chemokine concentrations, and discrete cellular automata to model cell–cell interactions and changes. The computational implementation overlays these two components on the same spatial region. We present representative simulations of the model and show that increasing the number of immature dendritic cells (DCs) in the domain causes a decrease in the number of tumor cells. This result strongly supports the hypothesis that DCs can be used as a cancer treatment. Furthermore, we also use the hybrid cellular automata model to investigate the growth of a tumor in a number of computational “cancer patients.” Using these virtual patients, the model can explain that increasing the number of DCs in the domain causes longer “survival.” Not surprisingly, the model also reflects the fact that the parameter related to tumor division rate plays an important role in tumor metastasis

    Aspects of urinary tract infections and antimicrobial resistance in hospitalized urology patients in Asia: 10-Year results of the Global Prevalence Study of Infections in Urology (GPIU)

    No full text
    10.1016/j.jiac.2017.11.013Journal of Infection and Chemotherapy244278-283JICH

    Architecture of Polymers: Topological Structure–Properties Relationship

    No full text
    corecore