14,944 research outputs found

    On the production mechanism of radio-pulses from large extensive air showers

    Get PDF
    None of the theories put forward so far to explain the radio emission from cosmic ray showers, has been successful in giving a satisfactory explanation for all the experimental data obtained from various laboratories over the globe. It is apprehended that emission mechanism at low and high frequencies may be quite different. This calls for new theoretical look into the phenomenon. Theoretical as well as the experimental results indicate that the frequency spectrum is rather flat in the frequency range (40 to 60 MHz. Above 80 MHz, the radio emission can be explained with the help of geomagnetic mechanism. But at very low frequency ( 10 MHz), mechanisms other than geomagnetic are involved

    On the Observability of "Invisible" / "Nearly Invisible" Charginos

    Get PDF
    It is shown that if the charginos decay into very soft leptons or hadrons + E̸\not{E} due to degeneracy/ near- degeneracy with the LSP or the sneutrino, the observability of the recently proposed signal via the single photon (+ soft particles) + E̸\not{E} channel crucially depends on the magnitude of the \SNU mass due to destructive interferences in the matrix element squared. If the \SNU's and, consequently, left-sleptons are relatively light, the size of the signal, previously computed in the limit \MSNU \to \infty only, is drastically reduced. We present the formula for the signal cross section in a model independent way and discuss the observability of the signal at LEP 192 and NLC energies.Comment: 27 pages, Late

    Current-voltage (I-V) characteristics of armchair graphene nanoribbons under uniaxial strain

    Get PDF
    The current-voltage (I-V) characteristics of armchair graphene nanoribbons under a local uniaxial tension are investigated by using first principles quantum transport calculations. It is shown that for a given value of bias-voltage, the resulting current depends strongly on the applied tension. The observed trends are explained by means of changes in the band gaps of the nanoribbons due to the applied uniaxial tension. In the course of plastic deformation, the irreversible structural changes and derivation of carbon monatomic chains from graphene pieces can be monitored by two-probe transport measurements.Comment: please see the published version at http://prb.aps.org/abstract/PRB/v81/i20/e20543

    Peeling Back the Onion Competitive Advantage Through People: Test of a Causal Model

    Get PDF
    Proponents of the resource-based view (RBV) of the firm have identified human resource management (HRM) and human capital as organizational resources that can contribute to sustainable competitive success. A number of empirical studies have documented the relationship between systems of human resource policies and practices and firm performance. The mechanisms by which HRM leads to firm performance, however, remain largely unexplored. In this study, we explore the pathways leading from HRM to firm performance. Specifically, we use structural equation modeling to test a model positing a set of causal relationships between high performance work systems (HPWS), employee retention, workforce productivity and firm market value. Within a set of manufacturing firms, results indicate the primary impact of HPWS on productivity and market value is through its influence on employee retention

    Constitutive modelling of Sandvik 1RK91

    Get PDF
    A physically based constitutive equation is being developed for the maraging\ud stainless steel Sandvik 1RK91. The steel is used to make precision parts. These parts are formed through multistage forming operations and heat treatments from cold rolled and annealed sheets. The specific alloy is designed to be thermodynamically unstable, so that deformation even at room temperatures can bring about a change in the phase of face centred cubic austenite to either hexagonal closed packed martensite and/or, body centred cubic martensite. This solid state phase change is a function of the strain path, strain, strain rate and temperature. Thus, the fraction of the new phase formed depends on the state of stress at a given location in the part being formed. Therefore a set of experiments is being conducted in order to quantify the stress-strain behavior of this steel under various stress states, strain, strain rate as well as temperature. A magnetic sensor records the fraction of ferromagnetic martensite formed from paramagnetic austenite. A thermocouple as well as an infra red thermometer is used to log the change in temperature of the steel during a mechanical test. The force-displacement data are converted to stress-strain data after correcting for the changes in strain rate and temperature. These data are then cast into a general form of constitutive equation and the transformation equations are derived from Olson-Cohen type functions

    HRM and Firm Productivity: Does Industry Matter?

    Get PDF
    Recent years have witnessed burgeoning interest in the degree to which human resource systems contribute to organizational effectiveness. We argue that extant research has not fully considered important contextual conditions which moderate the efficacy of these practices. Specifically, we invoke a contingency perspective in proposing that industry characteristics affect the relative importance and value of high performance work practices (HPWPs). We test this proposition on a sample of non-diversified manufacturing firms. After controlling for the influence of a number of other factors, study findings support the argument that industry characteristics moderate the influence of HPWPs on firm productivity. Specifically, the impact of a system of HPWPs on firm productivity is significantly influenced by the industry conditions of capital intensity, growth and differentiation

    Role of electronic structure in photoassisted transport through atomic-sized contacts

    Full text link
    We study theoretically quantum transport through laser-irradiated metallic atomic-sized contacts. The radiation field is treated classically, assuming its effect to be the generation of an ac voltage over the contact. We derive an expression for the dc current and compute the linear conductance in one-atom thick contacts as a function of the ac frequency, concentrating on the role played by electronic structure. In particular, we present results for three materials (Al, Pt, and Au) with very different electronic structures. It is shown that, depending on the frequency and the metal, the radiation can either enhance or diminish the conductance. This can be intuitively understood in terms of the energy dependence of the transmission of the contacts in the absence of radiation.Comment: 7 pages, 7 figures; four new figures adde

    Quantum transport through molecular wires

    Full text link
    We explore electron transport properties in molecular wires made of heterocyclic molecules (pyrrole, furan and thiophene) by using the Green's function technique. Parametric calculations are given based on the tight-binding model to describe the electron transport in these wires. It is observed that the transport properties are significantly influenced by (a) the heteroatoms in the heterocyclic molecules and (b) the molecule-to-electrodes coupling strength. Conductance (gg) shows sharp resonance peaks associated with the molecular energy levels in the limit of weak molecular coupling, while they get broadened in the strong molecular coupling limit. These resonances get shifted with the change of the heteroatoms in these heterocyclic molecules. All the essential features of the electron transfer through these molecular wires become much more clearly visible from the study of our current-voltage (II-VV) characteristics, and they provide several key informations in the study of molecular transport.Comment: 8 pages, 4 figure

    Distinguishing Supersymmetry From Universal Extra Dimensions or Little Higgs Models With Dark Matter Experiments

    Get PDF
    There are compelling reasons to think that new physics will appear at or below the TeV-scale. It is not known what form this new physics will take, however. Although The Large Hadron collider is very likely to discover new particles associated with the TeV-scale, it may be difficult for it to determine the nature of those particles, whether superpartners, Kaluza-Klein modes or other states. In this article, we consider how direct and indirect dark matter detection experiments may provide information complementary to hadron colliders, which can be used to discriminate between supersymmetry, models with universal extra dimensions, and Little Higgs theories. We find that, in many scenarios, dark matter experiments can be effectively used to distinguish between these possibilities.Comment: 23 pages, 7 figures, references added in version

    Rayleigh and Love Waves in Cladded Anisotropic Medium

    Get PDF
    Early work on dispersion of Rayleigh and Love waves was by Love [1], who gave the first comprehensive treatment of the case of an elastic solid half-space covered by a single solid layer
    • …
    corecore