13,289 research outputs found
Temperature Profiles of Accretion Disks around Rapidly Rotating Neutron Stars in General Relativity and Implications for Cygnus X-2
We calculate the temperature profiles of (thin) accretion disks around
rapidly rotating neutron stars (with low surface magnetic fields), taking into
account the full effects of general relativity. We then consider a model for
the spectrum of the X-ray emission from the disk, parameterized by the mass
accretion rate, the color temperature and the rotation rate of the neutron
star. We derive constraints on these parameters for the X-ray source Cygnus X-2
using the estimates of the maximum temperature in the disk along with the disk
and boundary layer luminosities, using the spectrum inferred from the EXOSAT
data. Our calculations suggest that the neutron star in Cygnus X-2 rotates
close to the centrifugal mass-shed limit. Possible constraints on the neutron
star equation of state are also discussed.Comment: 18 pages, 9 figs., 2 tables, uses psbox.tex and emulateapj5.sty.
Submitted to Ap
Relevance of Induced Gauge Interactions in Decoherence
Decoherence in quantum cosmology is shown to occur naturally in the presence
of induced geometric gauge interactions associated with particle production.A
new 'gauge '-variant form of the semiclassical Einstein equations is also
presented which makes the non-gravitating character of the vacuum polarisation
energy explicit.Comment: 10 pages, LATEX, IC/94/16
Phonon runaway in nanotube quantum dots
We explore electronic transport in a nanotube quantum dot strongly coupled
with vibrations and weakly with leads and the thermal environment. We show that
the recent observation of anomalous conductance signatures in single-walled
carbon nanotube (SWCNT) quantum dots can be understood quantitatively in terms
of current driven `hot phonons' that are strongly correlated with electrons.
Using rate equations in the many-body configuration space for the joint
electron-phonon distribution, we argue that the variations are indicative of
strong electron-phonon coupling requiring an analysis beyond the traditional
uncorrelated phonon-assisted transport (Tien-Gordon) approach.Comment: 8 pages, 6 figure
Partial Pole Placement with Controller Optimization
An arbitrary subset (n - m) of the (n) closed loop eigenvalues of an n(th) order continuous time single input linear time invariant system is to be placed using full state feedback, at pre-specified locations in the complex plane. The remaining closed loop eigenvalues can be placed anywhere inside a pre-defined region in the complex plane. This region constraint on the unspecified poles is translated into a linear matrix inequality constraint on the feedback gains through a convex inner approximation of the polynomial stability region. The closed loop locations for these eigenvalues are optimized to obtain a minimum norm feedback gain vector. This reduces the controller effort leading to less expensive actuators required to be installed in the control system. The proposed algorithm is illustrated on a linearized model of a 4-machine, 2-area power system example
DEVELOPMENT OF EXTRACTIVE SPECTROPHOTOMETRIC METHOD FOR THE DETERMINATION OF IRON (III) WITH SCHIFF BASE 2-[(2-HYDROXYPHENYLIMINO) METHYL]-4-NITROPHENOL
Objective: A simple spectrophotometric method has been developed for the determination of Iron (III) by using Schiff base 2-[(2-hydroxyphenylimino) methyl]-4-nitrophenol [HPIMNP].Methods: HPIMNP extracts Fe (III) quantitatively (99.95%) into chloroform from an aqueous solution of pH range 4.0-6.0.Results: The chloroform extracts show maximum absorption at 510 nm (λ max). Beer's Law is obeyed over the Fe (III) concentration range of 0.5 to 20.0 µg/ml. The Molar absorptivity and Sandell's sensitivity for Fe–HPIMNP system is 5000 L mol ˉ1 cmˉ1 and 0.011 µg cmˉ2respectively. The composition of extracted species is found to be 1: 3 [Fe-HPIMNP] by Job's continuous variation and Mole-ratio method. Interference by various ions has been studied.Conclusion: The proposed method is rapid, sensitive, reproducible and accurate and it has been satisfactory applied for the determination of Iron in Pharmaceutical Samples
Large transconductance oscillations in a single-well vertical Aharonov-Bohm interferometer
Aharonov-Bohm (AB) interference is reported for the first time in the
conductance of a vertical nanostructure based on a single GaAs/AlGaAs quantum
well (QW). The two lowest subbands of the well are spatially separated by the
Hartree barrier originating from electronic repulsion in the modulation-doped
QW and provide AB two-path geometry. Split-gates control the in-plane
electronic momentum dispersion. In our system, we have clearly demonstrated AB
interference in both electrostatic and magnetic modes. In the latter case the
magnetic field was applied parallel to the QW plane, and perpendicular to the
0.02 um^2 AB loop. In the electrostatic mode of operation the single-QW scheme
adopted led to large transconductance oscillations with relative amplitudes
exceeding 30 %. The relevance of the present design strategy for the
implementation of coherent nanoelectronic devices is underlined.Comment: Accepted for publication on Physical Review B Rapid Communication
Rectification by charging -- the physics of contact-induced current asymmetry in molecular conductors
We outline the qualitatively different physics behind charging-induced
current asymmetries in molecular conductors operating in the weakly interacting
self-consistent field (SCF) and the strongly interacting Coulomb Blockade (CB)
regimes. A conductance asymmetry arises in SCF because of the unequal
mean-field potentials that shift a closed-shell conducting level differently
for positive and negative bias. A very different current asymmetry arises for
CB due to the unequal number of open-shell excitation channels at opposite bias
voltages. The CB regime, dominated by single charge effects, typically requires
a computationally demanding many-electron or Fock space description. However,
our analysis of molecular Coulomb Blockade measurements reveals that many novel
signatures can be explained using a {{simpler}} orthodox model that involves an
incoherent sum of Fock space excitations and {\it{hence treats the molecule as
a metallic dot or an island}}. This also reduces the complexity of the Fock
space description by just including various charge configurations only, thus
partially underscoring the importance of electronic structure, while retaining
the essence of the single charge nature of the transport process. We finally
point out, however, that the inclusion of electronic structure and hence
well-resolved Fock space excitations is crucial in some notable examples.Comment: 12 pages, 10 figure
Mesoscopic Resistance Fluctuations in Cobalt Nanoparticles
We present measurements of mesoscopic resistance fluctuations in cobalt
nanoparticles and study how the fluctuations with bias voltage, bias
fingerprints, respond to magnetization reversal processes. Bias fingerprints
rearrange when domains are nucleated or annihilated. The domain-wall causes an
electron wavefunction phase-shift of . The phase-shift is not
caused by the Aharonov-Bohm effect; we explain how it arises from the
mistracking effect, where electron spins lag in orientation with respect to the
moments inside the domain-wall. Dephasing time in Co at is short,
, which we attribute to the strong magnetocrystalline
anisotropy.Comment: 5 pages 3 figs colou
- …