322 research outputs found

    Spin-polarized transport and Andreev reflection in semiconductor/superconductor hybrid structures

    Full text link
    We show that spin-polarized electron transmission across semiconductor/superconductor (Sm/S) hybrid structures depends sensitively on the degree of spin polarization as well as the strengths of potential and spin-flip scattering at the interface. We demonstrate that increasing the Fermi velocity mismatch in the Sm and S regions can lead to enhanced junction transparency in the presence of spin polarization. We find that the Andreev reflection amplitude at the superconducting gap energy is a robust measure of the spin polarization magnitude, being independent of the strengths of potential and spin-flip scattering and the Fermi velocity of the superconductor.Comment: 4 pages, 2 figure

    Half-metallicity and Slater-Pauling behavior in the ferromagnetic Heusler alloys

    Full text link
    Introductory chapter for the book "Halfmetallic Alloys - Fundamentals and Applications" to be published in the series Springer Lecture Notes on Physics, P. H. Dederichs and I. Galanakis (eds). It contains a review of the theoretical work on the half-metallic Heusler alloys.Comment: Introductory chapter for the book "Halfmetallic Alloys - Fundamentals and Applications" to be published in the series Springer Lecture Notes on Physics, P. H. Dederichs and I. Galanakis (eds

    Neutralino Dark Matter, b-tau Yukawa Unification and Non-Universal Sfermion Masses

    Full text link
    We study the implications of minimal non-Universal Boundary Conditions in the sfermion Soft SUSY Breaking (SSB) masses of mSUGRA. We impose asymptotic b-tau Yukawa coupling Unification and we resort to a parameterization of the deviation from Universality in the SSB motivated by the multiplet structure of SU(5) GUT. A set of cosmo-phenomenological constraints, including the recent results from WMAP, determines the allowed parameter space of the models under consideration. We highlight a new coannihilation corridor where neutralino-sbottom and neutralino-tau sneutrino-stau coannihilations significantly contribute to the reduction of the neutralino relic density.Comment: 38 pages, 27 Figures, Latex; Version accepted for publication in PR

    Theory of spin-polarized bipolar transport in magnetic p-n junctions

    Full text link
    The interplay between spin and charge transport in electrically and magnetically inhomogeneous semiconductor systems is investigated theoretically. In particular, the theory of spin-polarized bipolar transport in magnetic p-n junctions is formulated, generalizing the classic Shockley model. The theory assumes that in the depletion layer the nonequilibrium chemical potentials of spin up and spin down carriers are constant and carrier recombination and spin relaxation are inhibited. Under the general conditions of an applied bias and externally injected (source) spin, the model formulates analytically carrier and spin transport in magnetic p-n junctions at low bias. The evaluation of the carrier and spin densities at the depletion layer establishes the necessary boundary conditions for solving the diffusive transport equations in the bulk regions separately, thus greatly simplifying the problem. The carrier and spin density and current profiles in the bulk regions are calculated and the I-V characteristics of the junction are obtained. It is demonstrated that spin injection through the depletion layer of a magnetic p-n junction is not possible unless nonequilibrium spin accumulates in the bulk regions--either by external spin injection or by the application of a large bias. Implications of the theory for majority spin injection across the depletion layer, minority spin pumping and spin amplification, giant magnetoresistance, spin-voltaic effect, biasing electrode spin injection, and magnetic drift in the bulk regions are discussed in details, and illustrated using the example of a GaAs based magnetic p-n junction.Comment: 36 pages, 11 figures, 2 table
    • …
    corecore