14,183 research outputs found

    The multi-frequency angular power spectrum of the epoch of reionization 21 cm signal

    Get PDF
    Observations of redshifted 21cm radiation from HI at high redshifts is an important future probe of reionization. We consider the Multi-frequency Angular Power Spectrum (MAPS) to quantify the statistics of the HI signal as a joint function of the angular multipole l and frequency separation \Delta\nu. The signal at two different frequencies is expected to get decorrelated as \Delta\nu is increased, and quantifying this decorrelation is particularly important in deciding the frequency resolution for future HI observations. This is also expected to play a very crucial role in extracting the signal from foregrounds as the signal is expected to decorrelate much faster than the foregrounds (which are largely continuum sources) with increasing \Delta\nu. In this paper we develop formulae relating the MAPS to different components of the three dimensional HI power spectrum taking into account HI peculiar velocities. We show that the flat-sky approximation provides a very good representation over the angular scales of interest, and a final expression which is very simple to calculate and interpret. We present results considering two models for the HI distribution, namely, (i) DM: where the HI traces the dark matter and (ii) PR: where the effects of patchy reionization are incorporated through two parameters. We find that while the DM signal is largely featureless, the PR signal peaks at the angular scales of the individual bubbles, and the signal is considerably enhanced for large bubble size. For most cases of interest at l \sim 100 the signal is uncorrelated beyond \Delta\nu \sim 1 MHz or even less, whereas it occurs around \sim 0.1 MHz at l \sim 10^3. The \Delta\nu dependence also carries an imprint of the bubble size and the bias, and is expected to be an important probe of the reionization scenario (abridged).Comment: Accepted for publication in MNRAS. Revised to match the accepted versio

    Conduction Mechanism in a Molecular Hydrogen Contact

    Get PDF
    We present first principles calculations for the conductance of a hydrogen molecule bridging a pair of Pt electrodes. The transmission function has a wide plateau with T~1 which extends across the Fermi level and indicates the existence of a single, robust conductance channel with nearly perfect transmission. Through a detailed Wannier function analysis we show that the H2 bonding state is not involved in the transport and that the plateau forms due to strong hybridization between the H2 anti-bonding state and states on the adjacent Pt atoms. The Wannier functions furthermore allow us to derive a resonant-level model for the system with all parameters determined from the fully self-consistent Kohn-Sham Hamiltonian.Comment: 5 pages, 4 figure

    Aqueous Solutions of Glucose & Sucrose as Actinometers

    Get PDF
    122-12

    Calculation of the Self-energy of Open Quantum Systems

    Full text link
    We propose an easy method of calculating the self-energy of semi-infinite leads attached to a mesoscopic system.Comment: 6 pages, 2 figures, published in J. Phys. Soc. Jp

    On some Correction on Free Energy of an Assembly of Charged Particles Due to Hard Core Potential

    Get PDF

    Understanding sheath blight resistance in rice: the road behind and the road ahead

    Get PDF
    Rice sheath blight disease, caused by the basidiomycetous necrotroph Rhizoctonia solani, became one of the major threats to the rice cultivation worldwide, especially after the adoption of high-yielding varieties. The pathogen is challenging to manage because of its extensively broad host range and high genetic variability and also due to the inability to find any satisfactory level of natural resistance from the available rice germplasm. It is high time to find remedies to combat the pathogen for reducing rice yield losses and subsequently to minimize the threat to global food security. The development of genetic resistance is one of the alternative means to avoid the use of hazardous chemical fungicides. This review mainly focuses on the effort of better understanding the host–pathogen relationship, finding the gene loci/markers imparting resistance response and modifying the host genome through transgenic development. The latest development and trend in the R. solani–rice pathosystem research with gap analysis are provided

    On the Observability of "Invisible" / "Nearly Invisible" Charginos

    Get PDF
    It is shown that if the charginos decay into very soft leptons or hadrons + \not{E} due to degeneracy/ near- degeneracy with the LSP or the sneutrino, the observability of the recently proposed signal via the single photon (+ soft particles) + \not{E} channel crucially depends on the magnitude of the \SNU mass due to destructive interferences in the matrix element squared. If the \SNU's and, consequently, left-sleptons are relatively light, the size of the signal, previously computed in the limit \MSNU \to \infty only, is drastically reduced. We present the formula for the signal cross section in a model independent way and discuss the observability of the signal at LEP 192 and NLC energies.Comment: 27 pages, Late

    Microscopic non-equilibrium theory of quantum well solar cells

    Full text link
    We present a microscopic theory of bipolar quantum well structures in the photovoltaic regime, based on the non-equilibrium Green's function formalism for a multi band tight binding Hamiltonian. The quantum kinetic equations for the single particle Green's functions of electrons and holes are self-consistently coupled to Poisson's equation, including inter-carrier scattering on the Hartree level. Relaxation and broadening mechanisms are considered by the inclusion of acoustic and optical electron-phonon interaction in a self consistent Born approximation of the scattering self energies. Photogeneration of carriers is described on the same level in terms of a self energy derived from the standard dipole approximation of the electron-photon interaction. Results from a simple two band model are shown for the local density of states, spectral response, current spectrum, and current-voltage characteristics for generic single quantum well systems.Comment: 10 pages, 6 figures; corrected typos, changed caption Fig. 1, replaced Fig.

    Water-solubilized aminoclay–metal nanoparticle composites and their novel properties

    Get PDF
    Nanoparticles of metals such as Au, Ag, Pd and Pt embedded in exfoliated sheets of aminoclays of the type R8Si8Mg6O16(OH)4, where R=CH2CH2NH2 are entirely water soluble. These sheets of the composite come to the organic-aqueous interface on addition of alkane thiols to the aqueous layer
    corecore