21 research outputs found

    The GRANDMA network in preparation for the fourth gravitational-wave observing run

    Get PDF
    GRANDMA is a world-wide collaboration with the primary scientific goal ofstudying gravitational-wave sources, discovering their electromagneticcounterparts and characterizing their emission. GRANDMA involves astronomers,astrophysicists, gravitational-wave physicists, and theorists. GRANDMA is now atruly global network of telescopes, with (so far) 30 telescopes in bothhemispheres. It incorporates a citizen science programme (Kilonova-Catcher)which constitutes an opportunity to spread the interest in time-domainastronomy. The telescope network is an heterogeneous set of already-existingobserving facilities that operate coordinated as a single observatory. Withinthe network there are wide-field imagers that can observe large areas of thesky to search for optical counterparts, narrow-field instruments that dotargeted searches within a predefined list of host-galaxy candidates, andlarger telescopes that are devoted to characterization and follow-up of theidentified counterparts. Here we present an overview of GRANDMA after the thirdobserving run of the LIGO/VIRGO gravitational-wave observatories in 2019−20202019-2020and its ongoing preparation for the forthcoming fourth observational campaign(O4). Additionally, we review the potential of GRANDMA for the discovery andfollow-up of other types of astronomical transients.<br

    Concepts for polarising sheets & "Dual-gridded" reflectors for circular polarisation

    No full text
    C-, Ku- and Ka-band communications and broadcast satellites use so-called dual-gridded reflector antennas for linear polarisation to provide independent reflector surfaces and/or independent feeds for the two orthogonal polarisations. This paper describes initial work to extend this concept to circular polarisation. First we set up preliminary specifications and identify several antenna concepts based upon planar transmission sheet polarisers. Next we identify a number of polarisers of which the most promising is the meander-line, the L+C strip-grids and the parallel-plate polariser. Finally we review the conclusions of the analyses and preliminary designs of the sheet polarisers - on the antenna level as part of a reflector antenna system, on the polariser level, and on the sheet level inside the polariser

    Rotation acceleration of asteroids (10115) 1992 SK, (1685) Toro, and (1620) Geographos due to the YORP effect

    No full text
    Context. The rotation state of small asteroids is affected by the Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect, which is a net torque caused by solar radiation directly reflected and thermally reemitted from the surface. Due to this effect, the rotation period slowly changes, which can be most easily measured in light curves because the shift in the rotation phase accumulates over time quadratically. Aims. By new photometric observations of selected near-Earth asteroids, we want to enlarge the sample of asteroids with a detected YORP effect. Methods. We collected archived light curves and carried out new photometric observations for asteroids (10115) 1992 SK, (1620) Geographos, and (1685) Toro. We applied the method of light curve inversion to fit observations with a convex shape model. The YORP effect was modeled as a linear change of the rotation frequency Ï…Â â‰ĄÂ dω∕dt and optimized together with other spin and shape parameters. Results. We detected the acceleration υ = (8.3 ± 0.6) × 10−8 rad d−2 of the rotation for asteroid (10115) 1992 SK. This observed value agrees well with the theoretical value of YORP-induced spin-up computed for our shape and spin model. For (1685) Toro, we obtained υ = (3.3 ± 0.3) × 10−9 rad d−2, which confirms an earlier tentative YORP detection. For (1620) Geographos, we confirmed the previously detected YORP acceleration and derived an updated value of υ with a smaller uncertainty. We also included the effect of solar precession into our inversion algorithm, and we show that there are hints of this effect in Geographos’ data. Conclusions. The detected change of the spin rate of (10115) 1992 SK has increased the total number of asteroids with YORP detection to ten. In all ten cases, the dω∕dt value is positive, so the rotation of these asteroids is accelerated. It is unlikely to be just a statistical fluke, but it is probably a real feature that needs to be explained

    GRANDMA Observations of ZTF/Fink Transients during Summer 2021

    No full text
    We present our follow-up observations with GRANDMA of transient sources revealed by the Zwicky Transient Facility (ZTF). Over a period of six months, all ZTF triggers were examined in real time by a dedicated science module implemented in the Fink broker, which will be used for the data processing of the Vera C. Rubin Observatory. In this article, we present three selection methods to identify kilonova candidates. Out of more than 35 million candidates, a hundred sources have passed our selection criteria. Six were then followed-up by GRANDMA (by both professional and amateur astronomers). The majority were finally classified either as asteroids or as supernovae events. We mobilized 37 telescopes, bringing together a large sample of images, taken under various conditions and quality. To complement the orphan kilonova candidates (those without associated gamma-ray bursts, which were all), we included three additional supernovae alerts to conduct further observations of during summer 2021. We demonstrate the importance of the amateur astronomer community that contributed images for scientific analyzes of new sources discovered in a magnitude range r'=17-19 mag. We based our rapid kilonova classification on the decay rate of the optical source that should exceed 0.3 mag/day. GRANDMA's follow-up determined the fading rate within 1.5+/-1.2 days post-discovery, without waiting for further observations from ZTF. No confirmed kilonovae were discovered during our observing campaign. This work will be continued in the coming months in the view of preparing for kilonova searches in the next gravitational-wave observing run O4

    GRANDMA Observations of ZTF/Fink Transients during Summer 2021

    No full text
    We present our follow-up observations with GRANDMA of transient sources revealed by the Zwicky Transient Facility (ZTF). Over a period of six months, all ZTF triggers were examined in real time by a dedicated science module implemented in the Fink broker, which will be used for the data processing of the Vera C. Rubin Observatory. In this article, we present three selection methods to identify kilonova candidates. Out of more than 35 million candidates, a hundred sources have passed our selection criteria. Six were then followed-up by GRANDMA (by both professional and amateur astronomers). The majority were finally classified either as asteroids or as supernovae events. We mobilized 37 telescopes, bringing together a large sample of images, taken under various conditions and quality. To complement the orphan kilonova candidates (those without associated gamma-ray bursts, which were all), we included three additional supernovae alerts to conduct further observations of during summer 2021. We demonstrate the importance of the amateur astronomer community that contributed images for scientific analyzes of new sources discovered in a magnitude range r'=17-19 mag. We based our rapid kilonova classification on the decay rate of the optical source that should exceed 0.3 mag/day. GRANDMA's follow-up determined the fading rate within 1.5+/-1.2 days post-discovery, without waiting for further observations from ZTF. No confirmed kilonovae were discovered during our observing campaign. This work will be continued in the coming months in the view of preparing for kilonova searches in the next gravitational-wave observing run O4
    corecore