24 research outputs found

    Micro-Raman scattering of selenium-filled double-walled carbon nanotubes: Temperature study

    Get PDF
    Selenium-filled double-walled carbon nanotubes Se@DWNT have been studied by high resolution transmission electron microscopy HRTEM and micro-Raman spectroscopy in the temperature interval from 80 to 600 K employing 785 nm excitation wavelength. The temperature dependences of the dominant bands G-band and G-band are analyzed in terms of the model developed by Klemens Phys. Rev. 148, 845 1966, Hart et al. Phys. Rev. B 1, 638 1970, Cowley J. Phys. France 26, 659 1965 and extended by Balkanski et al. Phys. Rev. B 26, 1928 1983 for anharmonic decay of optical phonons. The findings were compared to analogous study for empty double-walled carbon nanotubes DWNTs. The DWNT interatomic force constant modification as a result of the presence of the Se atoms inside the tubes is revealed through larger anharmonicity constants describing the temperature dependences of the G-band and the inner tube tangential modes G-ban

    Chemical analysis of a single basic cell of porous anodic aluminium oxide templates

    Get PDF
    We prepared anodic aluminium oxide (AAO) templates with “honeycomb” geometry, i.e. hexagonally ordered circular pores. The structures were extensively studied and characterized by EPMA coupled with FEG-SEM and FEG-TEM coupled with EDX at meso and nanoscopic scales, in other words, at the scale of a single basic cell making up the highly ordered porous anodic film. The analyses allowed the identification of the chemical compounds present and the evaluation of their levels in the different parts of each cell. Of note was the absence of phosphates inside the “skeleton” and their high content in the “internal part”. Various models of porous anodic film growth are discussed on the basis of the results, contributing to a better understanding of AAO template preparation and selfnanostructuring phenomena

    Magnetic and semi-conducting nano-composite films of spinel ferrite and cubic zinc oxide

    Get PDF
    Magnetic and semi-conducting nano-composite films have been prepared under bias polarization, by radio-frequency sputtering of a pure zinc ferrite target. These composite thin films are made of cubic Zn1 − yFeyO monoxide islands inside a spinel ferrite matrix. The relative proportion of each phase depends on the substrate polarization (i.e. bias power). When no bias is applied the films solely display the diffraction pattern of a spinel phase even if some islands inside the film can be observed by electron microscopy. When the bias power is increased, the spinel phase disappears progressively as enhanced formation of islands takes place in such a manner that the cubic Zn1 − yFeyO monoxide is solely revealed by X-ray diffraction for a bias power higher than 5 W. From bibliographical data and calculated phase diagrams, it can be inferred that these phases would require very low oxygen partial pressure, high temperature and mechanical pressure, to be obtained simultaneously by a conventional ceramic process. This underlines the strong potential of radio-frequency sputtering of oxide targets to prepare original oxides or composite materials

    Bulk or surface grafted silylated Ru(ii) complexes on silica as luminescent nanomaterials

    Get PDF
    A series of Ru(II) complexes with monosilylated-dipyridine ligand have been synthesized and fully characterized and were then covalently attached to silica nanoparticles. Two types of hybrids were obtained depending on the experimental procedure. In the first approach, metal complexes were incorporated inside the silica nanoparticles leaving a free hydroxylated silica surface for further functionalization. These silica based nanohybrids are similar to the well known nanoparticles encapsulating [Ru(bpy)3]2+ complexes preventing the release of the dye when used in aqueous or organic solutions. Size and luminescence properties vary throughout the series of metal complexes. The second approach leads to ruthenium(II) complexes covalently attached to the silica nanoparticle surface via hydrolysis and condensation of the ethoxysilyl group with silanol sites of Ludox type silica nanoparticles. This leads to the grafting of a monolayer for complexes with the monoethoxysilyl dipyridine ligand. In contrast, the complexes with triethoxysilyl ligands can lead to small amounts of oligomers, but their quantity is limited by the sterical constraints imposed by the molecular structure. The size of the hybrids depends on the starting particles. 29Si and 13C solid state NMR are used to characterize silica surface properties whereas TEM and SEM confirm nanosize and morphology of the hybrids. The complexes and the nanohybrids are luminescent, with variations for ruthenium(II) complexes that are covalently incorporated or grafted on the silica surfac

    Nanostructured materials with highly dispersed Au–Ce0.5Zr0.5O2 nanodomains: A route to temperature stable Au catalysts?

    Get PDF
    Our strategy to inhibit Au(0) growth with temperature involves the preparation of ultrafine Au clusters that are highly dispersed and strongly interacting with a thermally stable high-surface-area substrate. Temperature-stable Au-cluster-based catalysts were successfully prepared through the controlled synthesis of 3.5 nm Ce0.5Zr0.5O2 colloidal building blocks containing tailored strongly bound Au-cluster precursors. With the objective of stabilizing these Au clusters with temperature, grain growth of Ce0.5Zr0.5O2 nanodomains was inhibited by their dispersion through Al2O3 nanodomains. High surface area Au–Ce0.5Zr0.5O2–Al2O3 nanostructured composites were thus designed highlighting the drastic effect of Au cluster dispersion on Au(0) cluster growth. High thermal stability of our Au(0)-cluster-based catalysts was shown with the surprising catalytic activity for CO conversion observed on our nanostructured materials heated to temperatures as high as 800 C for 6 h

    Controlled growth of CNT in mesoporous AAO through optimized conditions for membrane preparation and CVD operation

    Get PDF
    Anodic aluminium oxide (RAAO) membranes with a mesoporous structure were prepared under strictly controlling experimental process conditions, and physically and chemically characterized by a wide range of experimental techniques. Commercial anodic aluminium oxide (CAAO) membranes were also investigated for comparison. We demonstrated that RAAO membranes have lower content of both water and phosphorus and showed better porosity shape than CAAO. The RAAO membranes were used for template growth of carbon nanotubes (CNT) inside its pores by ethylene chemical vapour deposition (CVD) in the absence of a catalyst. A composite material, containing one nanotube for each channel, having the same length as the membrane thickness and an external diameter close to the diameter of the membrane holes, was obtained. Yield, selectivity and quality of CNTs in terms of diameter, length and arrangement (i.e. number of tubes for each channel) were optimized by investigating the effect of changing the experimental conditions for the CVD process. We showed that upon thermal treatment RAAO membranes were made up of crystallized allotropic alumina phases, which govern the subsequent CNT growth, because of their catalytic activity, likely due to their Lewis acidity. The strict control of experimental conditions for membrane preparation and CNT growth allowed us to enhance the carbon structural order, which is a critical requisite for CNT application as a substitute for copper in novel nano-interconnects

    The Unexpected Complexity of Filling Double-Wall Carbon Nanotubes With Nickel (and Iodine) 1-D Nanocrystals

    Get PDF
    A variety of iodine-based one-dimensional (1-D) nanocrystals were introduced into double-wall carbon nanotubes (DWCNTs) using the molten phase method, as an intermediate step for ultimately obtaining encapsulated metal nanowires. Based on high-resolution transmission electron microscopy (HRTEM) observations using different imaging modes (bright field, dark field, and scanningTEM)and associated analytical tools (electron energy loss spectroscopy), it is revealed that the reality of nanotube filling is much more complex than expected. For some iodides (typically NiI2 ), earlier decomposition during the filling step was observed, which could not be anticipated from the known data on the bulk material. Other filling materials (e.g., iodine) show a variety of atomic structuration inside and outside the CNTs, which is driven by the available space being filled. Most of the encapsulated structures were confirmed by modelin

    Electrical conductivity of carbon nanotubes grown inside a mesoporous anodic aluminium oxide membrane

    Get PDF
    Well-aligned, open-ended carbon nanotubes (CNTs), free of catalyst and other carbon products, were synthesized inside the pores of an anodic aluminium oxide (AO) template without using any metallic catalyst. The CNTs and the CNT/AO composites were characterized by scanning and transmission electron microscopy, thermogravimetric analysis, Raman spectroscopy and X-ray diffraction. Particular care was devoted to the reactor design, synthesis conditions, the catalytic role of the templating alumina surface and the preservation of the alumina structure. The transport properties (sorption, diffusion and permeability) to water vapor were evaluated for both the alumina template and the CNT/AO composite membrane. The measured effective electrical volume conductivity of the CNT/AO composite was found ranging from a few up to 10 kS/m, in line with the recent literature. The estimated averaged values of the CNTs-wall conductivity was around 50 kS/m

    Synthesis of superparamagnetic iron(III) oxide nanowires in double-walled carbon nanotubes

    Get PDF
    The synthesis and characterization of superparamagnetic iron(III) oxide nanowires confined within double-walled carbon nanotubes by capillary filling with a melted precursor (iron iodide) followed by thermal treatment is reported for the first time
    corecore