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Chemical analysis of a single basic cell of porous anodic

aluminium oxide templates
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A B S T R A C T

We prepared anodic aluminium oxide (AAO) templates with “honeycomb” geometry, i.e.

hexagonally ordered circular pores. The structures were extensively studied and

characterized by EPMA coupled with FEG-SEM and FEG-TEM coupled with EDX at meso

and nanoscopic scales, in other words, at the scale of a single basic cell making up the highly

ordered porous anodic film. The analyses allowed the identification of the chemical

compounds present and the evaluation of their levels in the different parts of each cell. Of

note was the absence of phosphates inside the “skeleton” and their high content in the

“internal part”. Various models of porous anodic film growth are discussed on the basis of

the results, contributing to a better understanding of AAO template preparation and self-

nanostructuring phenomena.
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1. Introduction

The porous anodization of aluminium and its alloys is a well-

established process, widely used in various industrial fields

such as aeronautics, architectural decoration or anti-corrosion

protection. About twenty years ago, there was a renewal of

interest in this process due to the pioneering researchworks of

Masuda and Fukuda [1] and Gösele et al. [2], showing that

under particular anodizing conditions it is possible to obtain

highly ordered templates based on anodic aluminium oxide

(AAO) and to then use the templates to prepare nano-devices,

such as dots or wires [3–5].

Despite many academic and industrial studies, anodic film

growth in general, and self-assembly of pores in particular,

and the chemical composition of anodic films are still open to

discussion because they depend on many operational param-

eters. For example, the chemical composition of anodic films

directly depends on the nature of the aluminium alloy, the

anodizing electrolyte, and the electrical conditions applied

during the anodization.

The anodic films have also been reported [6–14] to be

amorphous and, in fact, include a variable mixture of alu-

minium compounds: hydroxyl Al(OH)3, oxy-hydroxyl AlOOH,

or hydrated oxides Al2O3,xH2O.

In 1979, Thibault and Duchemin [15] discovered that anodic

films obtained in sulphuric and phosphoric baths include

chemical elements originating from the electrolyte, such as

sulphates or phosphates. Similarly in 1989 Farnan et al. [16]

proved oxalate incorporation into the anodic films obtained

using oxalic baths. During this period, chemical analyses

considered the anodic films froma global point of view, i.e. at a

scale higher than the micrometer.

Keller et al. [17] was the first to propose a general model of

the anodic porous film, based on a set of unitary basic meso or

nanocells, each including a pore. In 1986, Wada et al. [12]

showed, using TEM cross-section views of a sulphuric anodic

film, that the cell walls include five different layers. Moreover,

Thompson [13] explained anion incorporation from different

electrolytes to the anodic films and more recently proposed a

“flow model” to describe the growth of the film. However, the
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chemical composition of the different parts of the unit cell

remains to be established exactly.

The aim of our study then was to extensively characterize

the anodic films not only at the mesoscopic scale but also at

the nanoscopic level (<20 nm) of a single basic cell.

In the present study, we prepared thick ordered phosphoric

anodic films allowing us to distinguish and to characterize the

different parts of a unit cell making up the AAO template.

2. Experimental

The substrate was pure aluminium (99.99%). All chemical

compounds used were analytical grade. Aqueous electrolyte

solutions were obtained using deionised water.

2.1. Process of Elaboration

As described elsewhere [18] the aluminium substrate (sample

diameter 14 mm) was prepared by sanding (firstly using grit

paper followed by felts soaked in alumina up to 1 micron) and

then by annealing under nitrogen atmosphere at 450 °C for 1 h.

Additional electropolishing was carried out at 25 V for 1 min in

a Jacquet mixed solution composed of perchloric/acetic acids

(34/66 vol.%).

Anodization was carried out without delay at 185 V for 4 h.

The electrolyte was made up of a vigorously mixed 8 wt.%

aqueous phosphoric acid solution, while an aluminium plate

(99.99 wt.%, diameter 30mm) was used as cathode. The tem-

perature was regulated at −1.5 °C by a cryostat (Huber CC2),

while the voltagewas applied by an Invensys Lambda generator

(300 V–5 A). After formation of the porous anodic film, the alu-

minium substrate was chemically dissolved using an 18 wt.%

hydrochloric acid solution including copper chloride CuCl

(0.1 mol/L).

2.2. Microscopic and Chemical Analyses

Field-emission gun transmission electron microscopy (FEG-

TEM—JEOL JEM 2100F) was used, in image or diffraction mode,

to determine themorphology of the pores (Fig. 1), i.e. the pores

density (ρ), the pore diameter (dp), the thickness of the porous

layer (ep), the thickness of the barrier (or compact) layer (eb)

and the percentage of the void volume (τ). FEG-TEM was

coupled with an energy dispersive X-ray (EDX-PGT) spectrom-

eter enabling EDX chemical analysis and mapping.

Elemental chemical analyses were obtained with EPMA

coupled with a field-emission gun scanning electron micros-

copy (FEG-SEM). The accelerating voltage was adjusted at 6 kV

to decrease the analysis volume up to 2·10−3 µm3 (analysis

diameter≈150 nm) in order to turn down the influence of

porosity. Six measurements were recorded for each sample.

3. Results and Discussion

3.1. Macroscale Characterization

FEG-TEM plan view (Fig. 2) of the as-prepared anodic films

showed that the porosity is well formed and highly ordered,

the structure being similar to Keller's ideal model.

The morphological characteristics of these AAO templates

are typically as follows:

pores density (ρ) 6.72·1012/m2

pores diameter (dp) 180±30 nm

thickness of the porous layer (ep) 76±1 µm

thickness of the barrier (or compact) layer (eb) 150±10 nm

and percentage void volume (τ) 18%.

EPMA coupled with FEG-SEM was used to determine the

elementary chemical contents:

O 61.5±0.6 at.%

Al 35.8±0.5 at.%

P 2.7±0.1 at.%.

The standard deviations are low (respectively 1, 2 and 4%

relative) in this case.

As shown by our own results and in agreement with

previous findings [6–14,19], the anodic films are composed of

aluminium hydroxide Al(OH)3, oxy-hydroxide AlOOH and

hydrated aluminaAl2O3; overall, these amorphous compounds

can be written as Al2O3.xH2O with 0≤x≤3. Phosphorus would

Fig. 1 – FEG-SEM cross-section view of a phosphoric anodic

film. Fig. 2 – FEG-TEM plan view of a phosphoric anodic film.



form aluminium phosphates [9–11], especially monophos-

phate (AlPO4) or trihydroxide phosphate of aluminium

(Al2PO4(OH)3); these two compounds can be written 2AlPO4,

y(Al2O3.3H2O) with y=0 or 1.

Working on the hypothesis that the compounds are

stoichiometric (x=0, 1 or 3) and the hydrogen is only involved

in water molecules, the global chemical composition of the

anodic film can be calculated from the P, Al and O contents

obtained by EPMA coupled with FEG-SEM. The corresponding

global atomic composition would then be:

Al2O3; 0:197AlPO4;0:034H2O:

This result is in agreement with those of Thompson [13]

and Mata-Zamora and Saniger [10], the anodic film always

including significant levels of phosphorus.

3.2. Characterization at Meso and Nanoscales

Anodic films were observed at the nanoscopic scale using the

FEG-TEM. The detailed structure of a unit basic cell (Fig. 3)

includes different distinct parts:

– a hexagonal structure, called the “skeleton”, which makes

up the common internal walls between the unit cells,

– an “internal part”, between the central pore and the

skeleton,

– a point, called the “interstitial rod” inside the skeleton, at

the intersection of three skeleton walls. Until now this

interstitial rod had never been mentioned, perhaps due to

its size. Its diameter is about 14 nm.

Fig. 3 – FEG-TEM plan view of a phosphoric anodic film,

showing its different parts (the skeleton, the internal part and

the interstitial rod).

Fig. 4 – FEG-TEM plan view (a) of a phosphoric anodic film and corresponding X-ray maps of the elements (b) phosphorus,

(c) oxygen and (d) aluminium.



The EDX chemical maps (Fig. 4), based on the Kα rays,

especially of the elements aluminium and phosphorus, show

the high chemical heterogeneity between the different parts of

the unit cell, especially the skeleton and the internal part. The

skeleton is mainly made up of aluminium and oxygen

elements, while the internal part includes a high content of

phosphorus elements. However, the oxygen map has to be

carefully considered because there is the possibility of con-

tamination during sample preparation under ambient atmo-

sphere. The interstitial rod, however, was not distinguishable

using this kind of chemical mapping.

Additional EDX analyses were performed on different

points: on the skeleton (points 1 and 2), on the interstitial

rod (point 3) and the internal part (points 4, 5 and 6) (Fig. 5).

The changes of the P/Al atomic ratio (Fig. 6), confirm that

the internal part (points 4, 5, and 6) has a high phosphorus

content. In contrast, the interstitial rod appears to have only a

very low proportion of phosphorus (point 3), and the skeleton

has none (points 1 and 2).

Fig. 7 shows that the Al/O atomic ratio is higher for the

skeleton (points 1 and 2) and the interstitial rod (point 3) than

for the internal part (points 4, 5, and 6). Moreover, the Al/O

ratio increases inside the internal part from the skeleton to the

pore wall.

All the EDX analyses primarily confirm the high heteroge-

neity of the elemental composition between the different parts

of the unit cell, especially between the skeleton and the

internal part. Furthermore, the lack of phosphorus in the

skeleton is clearly shown. Considering solely the formation of

the stoichiometric compounds Al2O3, AlPO4 and H2O, the com-

position of each part of the unitary cell can then be described

as:

– Al2O3, x1.H2O for the skeleton

– Al2O3, 0.018AlPO4, x2.H2O for the interstitial rod

– Al2O3, 0.24AlPO4, x3.H2O for the internal part.

3.3. Crystallization of the Anodic Films on the Nanoscale

During these FEG-TEM analyses, crystallization of the skel-

eton—and only the skeleton—was observed when the

duration of exposure to the beam was sufficient (Fig. 8). The

diffraction mode of the FEG-TEM was then used to highlight

the crystallization of the different parts of the structure (Fig. 9).

The internal part and the skeleton were initially both

amorphous. This amorphous state persisted in the case of the

internal part after 30 s of beam exposure, while the skeleton

became crystallized. Similar results [20] have been explained

by differences in anion incorporation and in the amount of

water. Here, the phosphorus compounds seem to stabilize the

oxidized forms of aluminium included in the internal part at

least during the first instants. Furthermore, this observation is

in agreement with the previous TG–DTA results obtained by

Mata-Zamora and Saniger using phosphoric, oxalic and

sulphuric anodic usual films [10].

3.4. Growth Mechanisms of the AAO Templates

The formation and growth of the anodic films are usually

studied with either a transient or a permanent electrical

regime. From thematerial point of view, the transients usually

correspond to the appearance of pores [21–27], while perma-

nent conditions refer to the steady-state growth of the anodic

films. In 1953, Keller et al. [17] proposed a model describing an

ideal microstructure of the anodic films obtained in the

Fig. 5 – FEG-TEM plan view of a phosphoric anodic film

showing the points analysed.

Fig. 6 – Phosphorus to aluminium atomic ratio.

Fig. 7 – Atomic ratios of Al to O, and P to O at the different

points.



steady-state regime. Hexagonal cells, each surrounding a

cylindrical pore, grow perpendicularly to the initial aluminium

surface. Hoar and Yahalom [28] suggested that the growth

mechanisms are based on the migration of O2−, OH− and Al3+

ions through the barrier layer. In 1978, Thompson et al. [29]

completed this model, suggesting that aluminic ions Al3+ are

initially ejected through the barrier layer and then precipitat-

ed with the anions from the anodizing bath, while Fukuda and

Fukushima [30] considered anion transfer, especially of

sulphates, through the compact layer.

From TEM cross-section views, Wada et al. [12] proposed,

in 1986, an innovating model of the anodic film structures,

including five different layers highlighted by TEM observa-

tions. Then, using xenon [13] and tungsten [31], Thompson

showed that phosphate total incorporationwas about 6–8 wt.%

in the whole anodic film. These results were explained by

anion adsorption on the surface of the barrier layer and by the

incorporation of the most mobile species in this layer. Thus,

the differences between PO4
3− and O2− mobilities could explain

the incomplete incorporation of the phosphates.

Moreover, Thompson's team proposed a new growth

model, called the flow model [31], based on the flow of

material from the barrier layer to the “cell wall regions”.

These different growthmodels are not totally contradictory

but are partly complementary. However, they do not totally

explain the observed structure, especially the interstitial

rod.

Our results suggest that the absence of phosphates inside

the skeletonand their high levels surrounding thepore seemto

indicate that the skeleton has no contact with the anodizing

electrolyte, while the internal part interacts with the bath.

Moreover, EDX chemical mapping corroborated, for the phos-

phoric anodization, the flow model [31], i.e. a growth of the

porous layer resulting partly from the ascent of the barrier

layer; a phenomenon perhaps due to electrostriction and

internal stress phenomena [32]. But, it is still difficult to explain

the formation of the interstitial rod, located right in theheart of

skeleton and including phosphorus from the electrolyte.

4. Conclusions

AAO templates were prepared by anodization in phosphoric

electrolyte. These highly ordered films were then extensively

characterized on different scales. In particular, the analyses

showed that the as-prepared AAO film is in fact amorphous,

partially hydrated and that its initial global chemical compo-

sition can be described, in agreement with previous works, as:

Al2O3; 0:197AlPO4;0:034H2O:

The analyses (by EPMAcoupledwith FEG-SEM,TEMcoupled

with EDX) clearly indicated the heterogeneous chemical com-

position of the different parts of the unit cell. To sum up, the

Fig. 8 – Crystallized skeleton after 30 s exposure to the

electron beam of the FEG-TEM.

Fig. 9 – FEG-TEM observations, obtained in diffraction mode, of (a) the internal part, (b) the skeleton of the as-prepared anodic

film, and (c) the skeleton after 30 s of exposure to the electron beam.



current study demonstrated the existence of different chem-

ical compositions:

Al2O3, x1H2O for the skeleton

Al2O3, 0.018AlPO4, x2H2O for the interstitial rod

Al2O3, 0.24AlPO4, x3H2O for the internal part.

Furthermore, these permanent regime results confirmed

the growth of the skeleton from the barrier layer in accordance

with the “flow model”. However, the presence of interstitial

rods inside the skeleton was experimentally demonstrated for

the first time. Knowing the chemical composition of the

different parts of the basic cell is essential for understanding

and improving any planned functionalization—for example

by chemical grafting—of the AAO phosphoric templates.
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