14 research outputs found

    Rocking of offshore lighthouses under extreme wave impacts: Limit analysis, analytic formulations and distinct element method

    Get PDF
    This study describes the structural response of historic lighthouses to extreme wave impacts. Located offshore on exposed rocks, 19th Century lighthouses were built with large interlocked granite blocks and have survived weathering for nearly two centuries. Under extreme wave impacts, lighthouses of this structural typology may uplift and rock, whereas sliding is prevented by the vertical interlocking. The uplift and sliding thresholds calculated with the limit analysis method reveal why this structural system is capable of bearing extreme wave impacts without failure. The ingenious vertical keying is proven to be a major characteristic that contributes to the resilience of these lighthouses. The structural response is explained with the use of analytic formulations of the rocking motion. Detailed analysis of the response to wave impact is conducted with reference to Wolf Rock lighthouse. The impact wave corresponding to a 250-year effective return period is identified using non-stationary Bayesian extreme analysis. Moreover, wave flume tests on a scaled cylindrical structure were performed to identify the wave impact force time-history shapes. Based on two waves: a theoretical time-history based on existing models in the literature and the measured time-histories from small-scale experiments, a series of synthetic force time-history sequences are generated for the purposes of a parametric analysis. This parametric analysis, with the Distinct Element Method, using the commercial software 3DEC, reveals the influence of the duration and shape of the force time-history function. For impacts with the same impulse values, shorter time impacts produce the most intense opening of joints, despite causing smaller horizontal displacements. Furthermore, variability in the structural response is revealed even for impacts of the same impulse, duration and maximum force but different shape of the force time-history

    Influence of the Spatial Pressure Distribution of Breaking Wave Loading on the Dynamic Response of Wolf Rock Lighthouse

    Get PDF
    The survivability analysis of offshore rock lighthouses requires several assumptions of the pressure distribution due to the breaking wave loading (Raby et al. (2019), Antonini et al. (2019). Due to the peculiar bathymetries and topographies of rock pinnacles, there is no dedicated formula to properly quantify the loads induced by the breaking waves on offshore rock lighthouses. Wienke’s formula (Wienke and Oumeraci (2005) was used in this study to estimate the loads, even though it was not derived for breaking waves on offshore rock lighthouses, but rather for the breaking wave loading on offshore monopiles. However, a thorough sensitivity analysis of the effects of the assumed pressure distribution has never been performed. In this paper, by means of the Wolf Rock lighthouse distinct element model, we quantified the influence of the pressure distributions on the dynamic response of the lighthouse structure. Different pressure distributions were tested, while keeping the initial wave impact area and pressure integrated force unchanged, in order to quantify the effect of different pressure distribution patterns. The pressure distributions considered in this paper showed subtle differences in the overall dynamic structure responses; however, pressure distribution #3, based on published experimental data such as Tanimoto et al. (1986) and Zhou et al. (1991) gave the largest displacements. This scenario has a triangular pressure distribution with a peak at the centroid of the impact area, which then linearly decreases to zero at the top and bottom boundaries of the impact area. The azimuthal horizontal distribution was adopted from Wienke and Oumeraci’s work (2005). The main findings of this study will be of interest not only for the assessment of rock lighthouses but also for all the cylindrical structures built on rock pinnacles or rocky coastlines (with steep foreshore slopes) and exposed to harsh breaking wave loading.</jats:p

    Transcriptional Homeostasis of a Mangrove Species, Ceriops tagal, in Saline Environments, as Revealed by Microarray Analysis

    Get PDF
    <div><h3>Background</h3><p>Differential responses to the environmental stresses at the level of transcription play a critical role in adaptation. Mangrove species compose a dominant community in intertidal zones and form dense forests at the sea-land interface, and although the anatomical and physiological features associated with their salt-tolerant lifestyles have been well characterized, little is known about the impact of transcriptional phenotypes on their adaptation to these saline environments.</p> <h3>Methodology and Principal findings</h3><p>We report the time-course transcript profiles in the roots of a true mangrove species, <em>Ceriops tagal</em>, as revealed by a series of microarray experiments. The expression of a total of 432 transcripts changed significantly in the roots of <em>C. tagal</em> under salt shock, of which 83 had a more than 2-fold change and were further assembled into 59 unigenes. Global transcription was stable at the early stage of salt stress and then was gradually dysregulated with the increased duration of the stress. Importantly, a pair-wise comparison of predicted homologous gene pairs revealed that the transcriptional regulations of most of the differentially expressed genes were highly divergent in <em>C. tagal</em> from that in salt-sensitive species, <em>Arabidopsis thaliana</em>.</p> <h3>Conclusions/Significance</h3><p>This work suggests that transcriptional homeostasis and specific transcriptional regulation are major events in the roots of <em>C. tagal</em> when subjected to salt shock, which could contribute to the establishment of adaptation to saline environments and, thus, facilitate the salt-tolerant lifestyle of this mangrove species. Furthermore, the candidate genes underlying the adaptation were identified through comparative analyses. This study provides a foundation for dissecting the genetic basis of the adaptation of mangroves to intertidal environments.</p> </div
    corecore