10 research outputs found

    Neurodevelopmental disorders in children aged 2-9 years: Population-based burden estimates across five regions in India.

    Get PDF
    BACKGROUND: Neurodevelopmental disorders (NDDs) compromise the development and attainment of full social and economic potential at individual, family, community, and country levels. Paucity of data on NDDs slows down policy and programmatic action in most developing countries despite perceived high burden. METHODS AND FINDINGS: We assessed 3,964 children (with almost equal number of boys and girls distributed in 2-<6 and 6-9 year age categories) identified from five geographically diverse populations in India using cluster sampling technique (probability proportionate to population size). These were from the North-Central, i.e., Palwal (N = 998; all rural, 16.4% non-Hindu, 25.3% from scheduled caste/tribe [SC-ST] [these are considered underserved communities who are eligible for affirmative action]); North, i.e., Kangra (N = 997; 91.6% rural, 3.7% non-Hindu, 25.3% SC-ST); East, i.e., Dhenkanal (N = 981; 89.8% rural, 1.2% non-Hindu, 38.0% SC-ST); South, i.e., Hyderabad (N = 495; all urban, 25.7% non-Hindu, 27.3% SC-ST) and West, i.e., North Goa (N = 493; 68.0% rural, 11.4% non-Hindu, 18.5% SC-ST). All children were assessed for vision impairment (VI), epilepsy (Epi), neuromotor impairments including cerebral palsy (NMI-CP), hearing impairment (HI), speech and language disorders, autism spectrum disorders (ASDs), and intellectual disability (ID). Furthermore, 6-9-year-old children were also assessed for attention deficit hyperactivity disorder (ADHD) and learning disorders (LDs). We standardized sample characteristics as per Census of India 2011 to arrive at district level and all-sites-pooled estimates. Site-specific prevalence of any of seven NDDs in 2-<6 year olds ranged from 2.9% (95% CI 1.6-5.5) to 18.7% (95% CI 14.7-23.6), and for any of nine NDDs in the 6-9-year-old children, from 6.5% (95% CI 4.6-9.1) to 18.5% (95% CI 15.3-22.3). Two or more NDDs were present in 0.4% (95% CI 0.1-1.7) to 4.3% (95% CI 2.2-8.2) in the younger age category and 0.7% (95% CI 0.2-2.0) to 5.3% (95% CI 3.3-8.2) in the older age category. All-site-pooled estimates for NDDs were 9.2% (95% CI 7.5-11.2) and 13.6% (95% CI 11.3-16.2) in children of 2-<6 and 6-9 year age categories, respectively, without significant difference according to gender, rural/urban residence, or religion; almost one-fifth of these children had more than one NDD. The pooled estimates for prevalence increased by up to three percentage points when these were adjusted for national rates of stunting or low birth weight (LBW). HI, ID, speech and language disorders, Epi, and LDs were the common NDDs across sites. Upon risk modelling, noninstitutional delivery, history of perinatal asphyxia, neonatal illness, postnatal neurological/brain infections, stunting, LBW/prematurity, and older age category (6-9 year) were significantly associated with NDDs. The study sample was underrepresentative of stunting and LBW and had a 15.6% refusal. These factors could be contributing to underestimation of the true NDD burden in our population. CONCLUSIONS: The study identifies NDDs in children aged 2-9 years as a significant public health burden for India. HI was higher than and ASD prevalence comparable to the published global literature. Most risk factors of NDDs were modifiable and amenable to public health interventions

    Mass gatherings: a review of the scope for meningococcal vaccination in the Indian context

    No full text
    The risk of meningococcal transmission is increased with crowding and prolonged close proximity between people. There have been numerous invasive meningococcal disease (IMD) outbreaks associated with mass gatherings and other overcrowded situations, including cramped accommodation, such as student and military housing, and refugee camps. In these conditions, IMD outbreaks predominantly affect adolescents and young adults. In this narrative review, we examine the situation in India, where the burden of IMD-related complications is significant but the reported background incidence of IMD is low. However, active surveillance for meningococcal disease is suboptimal and laboratory confirmation of meningococcal strain is near absent, especially in non-outbreak periods. IMD risk factors are prevalent, including frequent mass gatherings and overcrowding combined with a demographically young population. Since overcrowded situations are generally unavoidable, the way forward relies on preventive measures. More widespread meningococcal vaccination and strengthened disease surveillance are likely to be key to this approach

    Proceedings of the Expert Consensus Group meeting on meningococcal serogroup B disease burden and prevention in India

    No full text
    Meningococcal disease is highly transmissible, life-threatening and leaves significant sequelae in survivors. Every year, India, which has a plethora of risk factors for meningococcal disease, reports around 3000 endemic cases. However, the overall disease burden and serogroup distribution are unknown, creating a setting of general disease negligence and unawareness. Vaccination with quadrivalent meningococcal conjugate vaccine A, C, W, and Y is only recommended for high-risk children, and there is no overall guidance for meningococcal serogroup B (MenB) vaccination. MenB vaccines, which recently have been licensed in many countries but not in India, have significantly aided the fight against meningococcal disease. However, these MenB vaccines are not available in India. An Expert Consensus Group meeting was held with leading meningococcal disease experts to better understand the current disease epidemiology, particularly serogroup B, the prevalence gaps, and feasible ways to bridge them. The proceedings are presented in this paper

    Multivariable logistic regression analysis for risk factors for NDDs<sup>#</sup>.

    No full text
    <p>Multivariable logistic regression analysis for risk factors for NDDs<a href="http://www.plosmedicine.org/article/info:doi/10.1371/journal.pmed.1002615#t005fn001" target="_blank"><sup>#</sup></a>.</p

    Study recruitment profile.

    No full text
    <p>Study recruitment profile.</p

    Background characteristics of study participants.

    No full text
    <p>Background characteristics of study participants.</p

    Prevalence estimates of NDDs for the five study districts according to age categories<sup>*</sup>.

    No full text
    <p>Prevalence estimates of NDDs for the five study districts according to age categories<sup><a href="http://www.plosmedicine.org/article/info:doi/10.1371/journal.pmed.1002615#t004fn001" target="_blank">*</a></sup>.</p

    Neurodevelopmental disorders in children aged 2–9 years: Population-based burden estimates across five regions in India

    No full text
    corecore