6,638 research outputs found

    The Complexity of Hex and the Jordan Curve Theorem

    Get PDF

    Electrochemical Investigation of Phenethylammonium Bismuth Iodide as Anode in Aqueous Zn2+ Electrolytes

    Get PDF
    Despite the high potential impact of aqueous battery systems, fundamental characteristics such as cost, safety, and stability make them less feasible for large-scale energy storage systems. One of the main barriers encountered in the commercialization of aqueous batteries is the development of large-scale electrodes with high reversibility, high rate capability, and extended cycle stability at low operational and maintenance costs. To overcome some of these issues, the current research work is focused on a new class of material based on phenethylammonium bismuth iodide on fluorine doped SnO2-precoated glass substrate via aerosol-assisted chemical vapor deposition, a technology that is industrially competitive. The anode materials were electrochemically investigated in Zn2+ aqueous electrolytes as a proof of concept, which presented a specific capacity of 220 mAh g−1 at 0.4 A g−1 with excellent stability after 50 scans and capacity retention of almost 100%

    Braess's Paradox in Wireless Networks: The Danger of Improved Technology

    Full text link
    When comparing new wireless technologies, it is common to consider the effect that they have on the capacity of the network (defined as the maximum number of simultaneously satisfiable links). For example, it has been shown that giving receivers the ability to do interference cancellation, or allowing transmitters to use power control, never decreases the capacity and can in certain cases increase it by Ω(log(ΔPmax))\Omega(\log (\Delta \cdot P_{\max})), where Δ\Delta is the ratio of the longest link length to the smallest transmitter-receiver distance and PmaxP_{\max} is the maximum transmission power. But there is no reason to expect the optimal capacity to be realized in practice, particularly since maximizing the capacity is known to be NP-hard. In reality, we would expect links to behave as self-interested agents, and thus when introducing a new technology it makes more sense to compare the values reached at game-theoretic equilibria than the optimum values. In this paper we initiate this line of work by comparing various notions of equilibria (particularly Nash equilibria and no-regret behavior) when using a supposedly "better" technology. We show a version of Braess's Paradox for all of them: in certain networks, upgrading technology can actually make the equilibria \emph{worse}, despite an increase in the capacity. We construct instances where this decrease is a constant factor for power control, interference cancellation, and improvements in the SINR threshold (β\beta), and is Ω(logΔ)\Omega(\log \Delta) when power control is combined with interference cancellation. However, we show that these examples are basically tight: the decrease is at most O(1) for power control, interference cancellation, and improved β\beta, and is at most O(logΔ)O(\log \Delta) when power control is combined with interference cancellation

    Efficiency in Multi-objective Games

    Full text link
    In a multi-objective game, each agent individually evaluates each overall action-profile on multiple objectives. I generalize the price of anarchy to multi-objective games and provide a polynomial-time algorithm to assess it. This work asserts that policies on tobacco promote a higher economic efficiency

    Learning Convex Partitions and Computing Game-theoretic Equilibria from Best Response Queries

    Full text link
    Suppose that an mm-simplex is partitioned into nn convex regions having disjoint interiors and distinct labels, and we may learn the label of any point by querying it. The learning objective is to know, for any point in the simplex, a label that occurs within some distance ϵ\epsilon from that point. We present two algorithms for this task: Constant-Dimension Generalised Binary Search (CD-GBS), which for constant mm uses poly(n,log(1ϵ))poly(n, \log \left( \frac{1}{\epsilon} \right)) queries, and Constant-Region Generalised Binary Search (CR-GBS), which uses CD-GBS as a subroutine and for constant nn uses poly(m,log(1ϵ))poly(m, \log \left( \frac{1}{\epsilon} \right)) queries. We show via Kakutani's fixed-point theorem that these algorithms provide bounds on the best-response query complexity of computing approximate well-supported equilibria of bimatrix games in which one of the players has a constant number of pure strategies. We also partially extend our results to games with multiple players, establishing further query complexity bounds for computing approximate well-supported equilibria in this setting.Comment: 38 pages, 7 figures, second version strengthens lower bound in Theorem 6, adds footnotes with additional comments and fixes typo

    Circular Networks from Distorted Metrics

    Full text link
    Trees have long been used as a graphical representation of species relationships. However complex evolutionary events, such as genetic reassortments or hybrid speciations which occur commonly in viruses, bacteria and plants, do not fit into this elementary framework. Alternatively, various network representations have been developed. Circular networks are a natural generalization of leaf-labeled trees interpreted as split systems, that is, collections of bipartitions over leaf labels corresponding to current species. Although such networks do not explicitly model specific evolutionary events of interest, their straightforward visualization and fast reconstruction have made them a popular exploratory tool to detect network-like evolution in genetic datasets. Standard reconstruction methods for circular networks, such as Neighbor-Net, rely on an associated metric on the species set. Such a metric is first estimated from DNA sequences, which leads to a key difficulty: distantly related sequences produce statistically unreliable estimates. This is problematic for Neighbor-Net as it is based on the popular tree reconstruction method Neighbor-Joining, whose sensitivity to distance estimation errors is well established theoretically. In the tree case, more robust reconstruction methods have been developed using the notion of a distorted metric, which captures the dependence of the error in the distance through a radius of accuracy. Here we design the first circular network reconstruction method based on distorted metrics. Our method is computationally efficient. Moreover, the analysis of its radius of accuracy highlights the important role played by the maximum incompatibility, a measure of the extent to which the network differs from a tree.Comment: Submitte

    BeEAM Conditioning including High-Dose Bendamustine before Autologous Stem Cell Transplantation Is Safe and Effective in Patients with Waldenstrom's Macroglobulinemia.

    Get PDF
    High-dose chemotherapy (HDCT) with autologous stem cell transplantation (ASCT) is an option to consolidate remission in Waldenstrom's macroglobulinemia (WM), particularly in selected younger patients with chemosensitive disease. BEAM, consisting of BCNU, etoposide, cytarabine, and melphalan, is often used as a conditioning regimen. However, problems with BCNU, including pneumotoxicity, tolerance, and availability, necessitate the search for alternatives. In this pilot study, we investigated high-dose chemotherapy with BeEAM, in which BCNU is replaced with high-dose bendamustine as an alternative conditioning regimen in six subsequent patients with WM. Bendamustine treatment was well tolerated without unexpected toxicities. The overall response rate was 6/6 patients (2 very good partial responses (VGPR) and 4 PR). After a median follow-up of 72 months, two (33%) patients relapsed. Median progression-free and overall survivals were not reached, and no severe late-onset toxicities were observed so far. In this pilot study, BeEAM conditioning before ASCT seems feasible, safe, and effective in patients with WM

    Modulation of functional network properties in major depressive disorder following electroconvulsive therapy (ECT): a resting-state EEG analysis

    Full text link
    Electroconvulsive therapy (ECT) is a highly effective neuromodulatory intervention for treatment-resistant major depressive disorder (MDD). Presently, however, understanding of its neurophysiological effects remains incomplete. In the present study, we utilised resting-state electroencephalography (RS-EEG) to explore changes in functional connectivity, network topology, and spectral power elicited by an acute open-label course of ECT in a cohort of 23 patients with treatment-resistant MDD. RS-EEG was recorded prior to commencement of ECT and again within 48 h following each patient’s final treatment session. Our results show that ECT was able to enhance connectivity within lower (delta and theta) frequency bands across subnetworks largely confined to fronto-central channels, while, conversely, more widespread subnetworks of reduced connectivity emerged within faster (alpha and beta) bands following treatment. Graph-based topological analyses revealed changes in measures of functional segregation (clustering coefficient), integration (characteristic path length), and small-world architecture following ECT. Finally, post-treatment enhancement of delta and theta spectral power was observed, which showed a positive association with the number of ECT sessions received. Overall, our findings indicate that RS-EEG can provide a sensitive measure of dynamic neural activity following ECT and highlight network-based analyses as a promising avenue for furthering mechanistic understanding of the effects of convulsive therapies
    corecore