49 research outputs found

    The magnetic structure and field dependence of the cycloid phas mediating the spin reorientation transition in Ca₃Ru₂O₇

    Get PDF
    We report a comprehensive experimental investigation of the magnetic structure of the cycloidal phase in Ca3Ru2O7, which mediates the spin reorientation transition, and establishes its magnetic phase diagram. In zero applied field, single-crystal neutron diffraction data confirms the scenario deduced from an earlier resonant x-ray scattering study: between 46.7~K <T<49.0~K the magnetic moments form a cycloid in the a−b plane with a propagation wavevector of (δ,0,1) with δ≃0.025 and an ordered moment of about 1 μB, with the eccentricity of the cycloid evolving with temperature. In an applied magnetic field applied parallel to the b-axis, the intensity of the (δ,0,1) satellite peaks decreases continuously up to about μ0H≃5 T, above which field the system becomes field polarised. Both the eccentricity of the cycloid and the wavevector increase with field, the latter suggesting an enhancement of the anti−symmetric Dzyaloshinskii−Moriya interaction via magnetostriction effects. Transitions between the various low-temperature magnetic phases have been carefully mapped out using magnetometry and resistivity. The resulting phase diagram reveals that the cycloid phase exists in a temperature window that expands rapidly with increasing field, before transitioning to a polarised paramagnetic state at 5 T. High-field magnetoresistance measurements show that below T≃70 K the resistivity increases continuously with decreasing temperature, indicating the inherent insulating nature at low temperatures of our high-quality, untwinned, single-crystals. We discuss our results with reference to previous reports of the magnetic phase diagram of Ca3Ru2O7 that utilised samples which were more metallic and/or poly-domain

    Magnetic structure and field dependence of the cycloid phase mediating the spin reorientation transition in Ca3Ru2 O7

    Get PDF
    We report a comprehensive experimental investigation of the magnetic structure of the cycloidal phase in Ca3Ru2O7, which mediates the spin reorientation transition and establishes its magnetic phase diagram. In zero applied field, single-crystal neutron diffraction data confirm the scenario deduced from an earlier resonant x-ray scattering study: For 46.7K <T< 49.0 K the magnetic moments form a cycloid in the a-b plane with a propagation wave vector of (δ,0,1) with δ≃0.025 and an ordered moment of about 1μB, with the eccentricity of the cycloid evolving with temperature. In an applied magnetic field applied parallel to the b axis, the intensity of the (δ,0,1) satellite peaks decreases continuously up to about μ0H≃5T, above which field the system becomes field polarized. Both the eccentricity of the cycloid and the wave vector increase with field, the latter suggesting an enhancement of the antisymmetric Dzyaloshinskii-Moriya interaction over the symmetric exchange interactions via magnetostriction effects. Transitions between the various low-temperature magnetic phases have been carefully mapped out using magnetometry and resistivity. The resulting phase diagram reveals that the cycloid phase exists in a temperature window that expands rapidly with increasing field, before transitioning to a polarized paramagnetic state at 5 T. High-field magnetoresistance measurements show that below T≃70K the resistivity increases continuously with decreasing temperature, indicating the inherent insulating nature at low temperatures of our high-quality, untwinned, single crystals. We discuss our results with reference to previous reports of the magnetic phase diagram of Ca3Ru2O7 that utilized samples which were more metallic and/or polydomain

    Correlated electron metal properties of the honeycomb ruthenate Na₂RuO₃

    Get PDF
    We report the synthesis and characterization of polycrystalline Na_{2}RuO_{3}, a layered material in which the Ru^{4+} (4d^{4} configuration) form a honeycomb lattice. The optimal synthesis condition was found to produce a nearly ordered Na_{2}RuO_{3} (C2/c phase), as assessed from the refinement of the time-of-flight neutron powder diffraction. Magnetic susceptibility measurements reveal a large temperature-independent Pauli paramagnetism [x_{0} ~ 1.42(2) x 10^{-3} emu/mol Oe] with no evidence of magnetic ordering down to 1.5 K, and with an absence of dynamic magnetic correlations, as evidenced by neutron scattering spectroscopy. The intrinsic susceptibility (x_{0}) together with the Sommerfeld coefficient of gamma = 11.7(2) mJ/Ru mol K^{2} estimated from heat capacity measurements gives an enhanced Wilson ratio of R_{w} ≈ 8.9(1), suggesting that magnetic correlations may be present in this material. While transport measurements on pressed pellets show nonmetallic behavior, photoemission spectroscopy indicates a small but finite density of states at the Fermi energy, suggesting that the bulk material is metallic. Except for resistivity measurements, which may have been compromised by near-surface and interface effects, all other probes indicate that Na_{2}RuO_{3} is a moderately correlated electron metal. Our results thus stand in contrast to earlier reports that Na_{2}RuO_{3} is an antiferromagnetic insulator at low temperatures

    Evidence for an extended critical fluctuation region above the polar ordering transition in LiOsO₃

    Get PDF
    Metallic Li Os O 3 undergoes a continuous ferroelectric-like structural phase transition below T c = 140 K to realize a polar metal. To understand the microscopic interactions that drive this transition, we study its critical behavior above T c via electromechanical coupling—distortions of the lattice induced by short-range dipole-dipole correlations arising from Li off-center displacements. By mapping the full angular distribution of second harmonic electric-quadrupole radiation from Li Os O 3 and performing a simplified hyper-polarizable bond model analysis, we uncover subtle symmetry-preserving lattice distortions over a broad temperature range extending from T c up to around 230 K, characterized by nonuniform changes in the short and long Li-O bond lengths. Such an extended region of critical fluctuations may explain anomalous features reported in specific heat and Raman scattering data and suggests the presence of competing interactions that are not accounted for in existing theoretical treatments. More broadly, our results showcase how electromechanical effects serve as a probe of critical behavior near inversion symmetry-breaking transitions in metals

    Tuning of the Ru4+ ground-state orbital population in the 4d(4) Mott insulator Ca2RuO4 achieved by La doping

    Get PDF
    The ground-state orbital occupancy of the Ru4+ ion in Ca2−xLaxRuO4[x = 0, 0.05(1), 0.07(1), and 0.12(1)] was investigated by performing x-ray absorption spectroscopy (XAS) in the vicinity of the O K edge as a function of the angle between the incident beam and the surface of the single-crystal samples. A minimal model of the hybridization between the O 2p states probed at the K edge and the Ru 4d orbitals was used to analyze the XAS data, allowing the ratio of hole occupancies nxy/nyz,zx to be determined as a function of doping and temperature. For the samples displaying a low-temperature insulating ground state (x 0.07), nxy/nyz,zx is found to increase significantly with increasing doping, with increasing temperature acting to further enhance nxy/nyz,zx . For the x = 0.12 sample, which has a metallic ground state, the XAS spectra are found to be independent of temperature and not to be describable by the minimal hybridization model, while being qualitatively similar to the spectra displayed by the x 0.07 samples above their insulating to metallic transitions. To understand the origin of the evolution of the electronic structure of Ca2−xLaxRuO4 across its phase diagram, we have performed theoretical calculations based on a model Hamiltonian, comprising electron-electron correlations, crystal field , and spin-orbit coupling λ, of a Ru-O-Ru cluster, with realistic values used to parametrize the various interactions taken from the literature. Our calculations of the Ru hole occupancy as a function of /λ provide an excellent description of the general trends displayed by the data. In particular they establish that the enhancement of nxy/nyz,zx is driven by significant modifications to the crystal field as the tetragonal distortion of the RuO6 octahedral changes from compressive to tensile with La doping. We have also used our model to show that the hole occupancy of the O 2p and Ru 4d orbitals displays the same general trend as a function of /λ, thus validating the minimal hybridization model used to analyze the data. In essence, our results suggest that the predominant mechanism driving the emergence of the low-temperature metallic phase in La-doped Ca2RuO4 is the structurally induced redistribution of holes within the t2g orbitals, rather than the injection of free carriers

    Strain control of a bandwidth-driven spin reorientation in Ca₃Ru₂O₇

    Get PDF
    The layered-ruthenate family of materials possess an intricate interplay of structural, electronic and magnetic degrees of freedom that yields a plethora of delicately balanced ground states. This is exemplified by Ca3Ru2O7, which hosts a coupled transition in which the lattice parameters jump, the Fermi surface partially gaps and the spins undergo a 90∘ in-plane reorientation. Here, we show how the transition is driven by a lattice strain that tunes the electronic bandwidth. We apply uniaxial stress to single crystals of Ca3Ru2O7, using neutron and resonant x-ray scattering to simultaneously probe the structural and magnetic responses. These measurements demonstrate that the transition can be driven by externally induced strain, stimulating the development of a theoretical model in which an internal strain is generated self-consistently to lower the electronic energy. We understand the strain to act by modifying tilts and rotations of the RuO6 octahedra, which directly influences the nearest-neighbour hopping. Our results offer a blueprint for uncovering the driving force behind coupled phase transitions, as well as a route to controlling them

    Probing electron-phonon interactions away from the Fermi level with resonant inelastic x-ray scattering

    Get PDF
    Interactions between electrons and lattice vibrations are responsible for a wide range of material properties and applications. Recently, there has been considerable interest in the development of resonant inelastic x-ray scattering (RIXS) as a tool for measuring electron-phonon ( e -ph) interactions. Here, we demonstrate the ability of RIXS to probe the interaction between phonons and specific electronic states both near to, and away from, the Fermi level. We perform carbon K -edge RIXS measurements on graphite, tuning the incident x-ray energy to separately probe the interactions of the π ∗ and σ ∗ electronic states. Our high-resolution data reveal detailed structure in the multiphonon RIXS features that directly encodes the momentum dependence of the e -ph interaction strength. We develop a Green’s-function method to model this structure, which naturally accounts for the phonon and interaction-strength dispersions, as well as the mixing of phonon momenta in the intermediate state. This model shows that the differences between the spectra can be fully explained by contrasting trends of the e -ph interaction through the Brillouin zone, being concentrated at the Γ and K points for the π ∗ states while being significant at all momenta for the σ ∗ states. Our results advance the interpretation of phonon excitations in RIXS and extend its applicability as a probe of e -ph interactions to a new range of out-of-equilibrium situations

    Laser-induced transient magnons in Sr3Ir2O7 throughout the Brillouin zone.

    Get PDF
    Although ultrafast manipulation of magnetism holds great promise for new physical phenomena and applications, targeting specific states is held back by our limited understanding of how magnetic correlations evolve on ultrafast timescales. Using ultrafast resonant inelastic X-ray scattering we demonstrate that femtosecond laser pulses can excite transient magnons at large wavevectors in gapped antiferromagnets and that they persist for several picoseconds, which is opposite to what is observed in nearly gapless magnets. Our work suggests that materials with isotropic magnetic interactions are preferred to achieve rapid manipulation of magnetism

    3,3′-Diindolylmethane Induces G1 Arrest and Apoptosis in Human Acute T-Cell Lymphoblastic Leukemia Cells

    Get PDF
    Certain bioactive food components, including indole-3-carbinol (I3C) and 3,3′-diindolylmethane (DIM) from cruciferous vegetables, have been shown to target cellular pathways regulating carcinogenesis. Previously, our laboratory showed that dietary I3C is an effective transplacental chemopreventive agent in a dibenzo[def,p]chrysene (DBC)-dependent model of murine T-cell lymphoblastic lymphoma. The primary objective of the present study was to extend our chemoprevention studies in mice to an analogous human neoplasm in cell culture. Therefore, we tested the hypothesis that I3C or DIM may be chemotherapeutic in human T-cell acute lymphoblastic leukemia (T-ALL) cells. Treatment of the T-ALL cell lines CCRF-CEM, CCRF-HSB2, SUP-T1 and Jurkat with DIM in vitro significantly reduced cell proliferation and viability at concentrations 8- to 25-fold lower than the parent compound I3C. DIM (7.5 µM) arrested CEM and HSB2 cells at the G1 phase of the cell cycle and 15 µM DIM significantly increased the percentage of apoptotic cells in all T-ALL lines. In CEM cells, DIM reduced protein expression of cyclin dependent kinases 4 and 6 (CDK4, CDK6) and D-type cyclin 3 (CCND3); DIM also significantly altered expression of eight transcripts related to human apoptosis (BCL2L10, CD40LG, HRK, TNF, TNFRSF1A, TNFRSF25, TNFSF8, TRAF4). Similar anticancer effects of DIM were observed in vivo. Dietary exposure to 100 ppm DIM significantly decreased the rate of growth of human CEM xenografts in immunodeficient SCID mice, reduced final tumor size by 44% and increased the apoptotic index compared to control-fed mice. Taken together, our results demonstrate a potential for therapeutic application of DIM in T-ALL
    corecore