26 research outputs found

    Floating Phase in 1D Transverse ANNNI Model

    Full text link
    To study the ground state of ANNNI chain under transverse field as a function of frustration parameter κ\kappa and field strength Γ\Gamma, we present here two different perturbative analyses. In one, we consider the (known) ground state at κ=0.5\kappa=0.5 and Γ=0\Gamma=0 as the unperturbed state and treat an increase of the field from 0 to Γ\Gamma coupled with an increase of κ\kappa from 0.5 to 0.5+rΓ0.5+r\Gamma as perturbation. The first order perturbation correction to eigenvalue can be calculated exactly and we could conclude that there are only two phase transition lines emanating from the point κ=0.5\kappa=0.5, Γ=0\Gamma=0. In the second perturbation scheme, we consider the number of domains of length 1 as the perturbation and obtain the zero-th order eigenfunction for the perturbed ground state. From the longitudinal spin-spin correlation, we conclude that floating phase exists for small values of transverse field over the entire region intermediate between the ferromagnetic phase and antiphase.Comment: 11 pages, 11 figure

    Superparamagnetic iron oxide nanoparticle attachment on array of micro test tubes and microbeakers formed on p-type silicon substrate for biosensor applications

    Get PDF
    A uniformly distributed array of micro test tubes and microbeakers is formed on a p-type silicon substrate with tunable cross-section and distance of separation by anodic etching of the silicon wafer in N, N-dimethylformamide and hydrofluoric acid, which essentially leads to the formation of macroporous silicon templates. A reasonable control over the dimensions of the structures could be achieved by tailoring the formation parameters, primarily the wafer resistivity. For a micro test tube, the cross-section (i.e., the pore size) as well as the distance of separation between two adjacent test tubes (i.e., inter-pore distance) is typically approximately 1 μm, whereas, for a microbeaker the pore size exceeds 1.5 μm and the inter-pore distance could be less than 100 nm. We successfully synthesized superparamagnetic iron oxide nanoparticles (SPIONs), with average particle size approximately 20 nm and attached them on the porous silicon chip surface as well as on the pore walls. Such SPION-coated arrays of micro test tubes and microbeakers are potential candidates for biosensors because of the biocompatibility of both silicon and SPIONs. As acquisition of data via microarray is an essential attribute of high throughput bio-sensing, the proposed nanostructured array may be a promising step in this direction

    Floating Phase in 2D ANNNI Model

    Full text link
    We investigate whether the floating phase (where the correlation length is infinite and the spin-spin correlation decays algebraically with distance) exists in the temperature(TT) - frustration parameter (κ\kappa) phase diagram of 2D ANNNI model. To identify this phase, we look for the region where (i) finite size effect is prominent and (ii) some relevant physical quantity changes somewhat sharply and this change becomes sharper as the system size increases. For κ<0.5\kappa < 0.5 , the low temperature phase is ferromagnetic and we study energy and magnetization. For κ>0.5\kappa > 0.5 , the low temperature phase is antiphase and we study energy, layer magnetization, length of domain walls running along the direction of frustration, number of domain-intercepts that are of length 2 along the direction of frustration, and the number of domain walls that do not touch the upper and/or lower boundary. In agreement with some previous studies, our final conclusion is that, the floating phase exists, if at all, only along a line.Comment: 9 pages, 17 figure

    Spin-spin Correlation in Some Excited States of Transverse Ising Model

    Full text link
    We consider the transverse Ising model in one dimension with nearest-neighbour interaction and calculate exactly the longitudinal spin-spin correlation for a class of excited states. These states are known to play an important role in the perturbative treatment of one-dimensional transverse Ising model with frustrated second-neighbour interaction. To calculate the correlation, we follow the earlier procedure of Wu, use Szego's theorem and also use Fisher-Hartwig conjecture. The result is that the correlation decays algebraically with distance (nn) as 1/n1/\surd n and is oscillatory or non-oscillatory depending on the magnitude of the transverse field.Comment: 5 pages, 1 figur

    In Vitro Structural and Functional Evaluation of Gold Nanoparticles Conjugated Antibiotics

    Get PDF
    Bactericidal efficacy of gold nanoparticles conjugated with ampicillin, streptomycin and kanamycin were evaluated. Gold nanoparticles (Gnps) were conjugated with the antibiotics during the synthesis of nanoparticles utilizing the combined reducing property of antibiotics and sodium borohydride. The conjugation of nanoparticles was confirmed by dynamic light scattering (DLS) and electron microscopic (EM) studies. Such Gnps conjugated antibiotics showed greater bactericidal activity in standard agar well diffusion assay. The minimal inhibitory concentration (MIC) values of all the three antibiotics along with their Gnps conjugated forms were determined in three bacterial strains,Escherichia coli DH5α,Micrococcus luteusandStaphylococcus aureus. Among them, streptomycin and kanamycin showed significant reduction in MIC values in their Gnps conjugated form whereas; Gnps conjugated ampicillin showed slight decrement in the MIC value compared to its free form. On the other hand, all of them showed more heat stability in their Gnps conjugated forms. Thus, our findings indicated that Gnps conjugated antibiotics are more efficient and might have significant therapeutic implications

    Near-equilibrium instabilities in closed chemical systems under nonideal conditions. 3. Damped oscillation in ionic environment

    No full text
    This article does not have an abstract

    Real-time electro-diffusion method to discriminate carbon nanomaterials

    No full text
    We report both the experimental and theoretical insights of differential electro-diffusion behavior of carbon nanomaterials (e.g. single wall, multiwall carbon nanotubes, and graphene). We thus discriminate one from the other in a soft gel system. The differential mobility of such material depends on their intrinsic properties, both extend and rate of migration bearing the discriminatory signature. The mobility analysis is made by a real time monitoring of the respective bands.close0

    Probing ADP Induced Aggregation Kinetics During Platelet-Nanoparticle Interactions: Functional Dynamics Analysis to Rationalize Safety and Benefits.

    No full text
    Platelets, one of the most sensitive blood cells, can be activated by a range of external and internal stimuli including physical, chemical, physiological, and/or non-physiological agents. Platelets need to respond promptly during injury to maintain blood hemostasis. The time profile of platelet aggregation is very complex, especially in the presence of the agonist adenosine 5'-diphosphate (ADP), and it is difficult to probe such complexity using traditional linear dose response models. In the present study, we explored functional analysis techniques to characterize the pattern of platelet aggregation over time in response to nanoparticle induced perturbations. This has obviated the need to represent the pattern of aggregation by a single summary measure and allowed us to treat the entire aggregation profile over time, as the response. The modeling was performed in a flexible manner, without any imposition of shape restrictions on the curve, allowing smooth platelet aggregation over time. The use of a probabilistic framework not only allowed statistical prediction and inference of the aggregation signatures, but also provided a novel method for the estimation of higher order derivatives of the curve, thereby allowing plausible estimation of the extent and rate of platelet aggregation kinetics over time. In the present study, we focused on the estimated first derivative of the curve, obtained from the platelet optical aggregometric profile over time and used it to discern the underlying kinetics as well as to study the effects of ADP dosage and perturbation with gold nanoparticles. In addition, our method allowed the quantification of the extent of inter-individual signature variations. Our findings indicated several hidden features and showed a mixture of zero and first order kinetics interrupted by a metastable zero order ADP dose dependent process. In addition, we showed that the two first order kinetic constants were ADP dependent. However, we were able to perturb the overall kinetic pattern using gold nanoparticles, which resulted in autocatalytic aggregation with a higher aggregate mass and which facilitated the aggregation rate.We also sincerely thank SERB, India (grant number YSS/2015/002101) for supporting this research. HP acknowledges his fellowship (Jr, B1) at Wolfson College, University of Cambridge (UK), EU H2020 Marie Sklodowska-Curie Individual Fellowship (Grant no. 706694), MIIC Seed Grant at Linkoping University (LiU), Sweden
    corecore