15 research outputs found

    Simultaneous determination of 148 pharmaceuticals and illicit drugs in sewage sludge based on ultrasound-assisted extraction and liquid chromatography–tandem mass spectrometry

    Get PDF
    This paper describes the development and validation of a new method for the simultaneous determination of 148 substances in sewage sludge. The selected compounds belong to different classes of pharmaceuticals, including antibiotics, analgesic and/or anti-inflammatory drugs, antiepileptics, benzodiazepines, antipsychotics, and antidepressants, among others, and illicit drugs, including opiates, opioids, cocaine, amphetamines, cannabinoids, and their metabolites. As far as the authors are aware, this is the first method in the peer-reviewed literature covering such a large number of target drugs for determination in a complex matrix like sewage sludge. The method presented herein combines ultrasoundassisted extraction (USE) and liquid chromatography coupled to tandem mass spectrometry. Good analytical performance was achieved, with limit-of-detection values below 10 ng g−1 d.w. for 91 % of the analytes and absolute recovery in the range 50–110 % for more than 77 % of the studied compounds. A combination of methanol and acidified water, also containing EDTA, proved to be the optimum solvent mixture to perform the extractions. An extra solid-phaseextraction clean-up step was not required, substantially reducing sample-preparation time and solvent consumption. Finally, the developed method was applied to the analysis of different sewage-sludge samples from five wastewater treatment plants of Santorini Island (Greece). Out of the 148 target compounds, 36 were detected. Several compounds, including acetylsalicylic acid, citalopram, and ciprofloxacin among others, had maximum concentrations above 100 ng g−1 d.w

    Thorough investigation of the phenolic profile of reputable Greek honey varieties:varietal discrimination and floral markers identification using liquid chromatography–high-resolution mass spectrometry

    Get PDF
    Honey is a highly consumed commodity due to its potential health benefits upon certain consumption, resulting in a high market price. This fact indicates the need to protect honey from fraudulent acts by delivering comprehensive analytical methodologies. In this study, targeted, suspect and non-targeted metabolomic workflows were applied to identify botanical origin markers of Greek honey. Blossom honey samples (n = 62) and the unifloral fir (n = 10), oak (n = 24), pine (n = 39) and thyme (n = 34) honeys were analyzed using an ultra-high-performance liquid chromatography hybrid quadrupole time-of-flight mass spectrometry (UHPLC-q-TOF-MS) system. Several potential authenticity markers were revealed from the application of different metabolomic workflows. In detail, based on quantitative targeted analysis, three blossom honey markers were found, namely, galangin, pinocembrin and chrysin, while gallic acid concentration was found to be significantly higher in oak honey. Using suspect screening workflow, 12 additional bioactive compounds were identified and semi-quantified, achieving comprehensive metabolomic honey characterization. Lastly, by combining non-targeted screening with advanced chemometrics, it was possible to discriminate thyme from blossom honey and develop binary discriminatory models with high predictive power. In conclusion, a holistic approach to assessing the botanical origin of Greek honey is presented, highlighting the complementarity of the three applied metabolomic approaches

    Quality and Authenticity Control of Fruit Juices-A Review

    No full text
    Food fraud, being the act of intentional adulteration of food for financial advantage, has vexed the consumers and the food industry throughout history. According to the European Committee on the Environment, Public Health and Food Safety, fruit juices are included in the top 10 food products that are most at risk of food fraud. Therefore, reliable, efficient, sensitive and cost-effective analytical methodologies need to be developed continuously to guarantee fruit juice quality and safety. This review covers the latest advances in the past ten years concerning the targeted and non-targeted methodologies that have been developed to assure fruit juice authenticity and to preclude adulteration. Emphasis is placed on the use of hyphenated techniques and on the constantly-growing role of MS-based metabolomics in fruit juice quality control area

    Authentication of Greek PDO Kalamata Table Olives: A Novel Non-Target High Resolution Mass Spectrometric Approach

    No full text
    Food science continually requires the development of novel analytical methods to prevent fraudulent actions and guarantee food authenticity. Greek table olives, one of the most emblematic and valuable Greek national products, are often subjected to economically motivated fraud. In this work, a novel ultra-high-performance liquid chromatography–quadrupole time of flight tandem mass spectrometry (UHPLC-QTOF-MS) analytical method was developed to detect the mislabeling of Greek PDO Kalamata table olives, and thereby establish their authenticity. A non-targeted screening workflow was applied, coupled to advanced chemometric techniques such as Principal Component Analysis (PCA) and Partial Least Square Discriminant Analysis (PLS-DA) in order to fingerprint and accurately discriminate PDO Greek Kalamata olives from Kalamata (or Kalamon) type olives from Egypt and Chile. The method performance was evaluated using a target set of phenolic compounds and several validation parameters were calculated. Overall, 65 table olive samples from Greece, Egypt, and Chile were analyzed and processed for the model development and its accuracy was validated. The robustness of the chemometric model was tested using 11 Greek Kalamon olive samples that were produced during the following crop year, 2018, and they were successfully classified as Greek Kalamon olives from Kalamata. Twenty-six characteristic authenticity markers were indicated to be responsible for the discrimination of Kalamon olives of different geographical origins

    Development and Validation of Pesticide Residues Determination Method in Fruits and Vegetables through Liquid and Gas Chromatography Tandem Mass Spectrometry (LC-MS/MS and GC-MS/MS) Employing Modified QuEChERS Method and a Centrifugal Vacuum Concentrator

    No full text
    Pesticides are used for controlling organisms, weeds and animals, causing damage to plants. Although the use of pesticides is a prerequisite for producing safe food, their accumulation makes their rapid determination necessary to avoid negative impacts on human health. The aim of this study was to develop reliable and robust analytical methods for the determination of pesticide residues in fruits and vegetables, validated according to SANTE/12682/2019 guidance. Five different categories of fruits and vegetables were selected (apple, orange, onion, lettuce, tomato). The sample preparation was based on QuEChERS methodology, slightly modified in the clean-up step, and appropriate d-SPE reagents were selected for each commodity. A Multi-Tube Vortexer was used for better agitation. In the final step, the extract was split in two: one part was acidified and injected in LC-MS/MS and the other part was evaporated in a centrifugal vacuum concentrator, and reconstituted and injected in GC-MS/MS. With the centrifugal vacuum concentrator used instead of nitrogen stream, more pesticides were determined, while sensitivity and repeatability increased. Validation results satisfied the SANTE/12682/2019 guidelines for approximately 220 analytes for each commodity. LOQ was set at 0.010 mg/kg for all analytes. Successful external quality assessment (proficiency testing) proved that the methods are fit for purpose

    Ultrasound-Assisted Extraction of Specific Phenolic Compounds from <i>Petroselinum crispum</i> Leaves Using Response Surface Methodology and HPLC-PDA and Q-TOF-MS/MS Identification

    No full text
    Petroselinum crispum is native to the Mediterranean region and has been reported to contain several phenolic compounds in addition to the highest quantity of apigenin among several natural raw materials. The aim of the present study was to establish an extraction method for the most abundant phenolic compounds of Petroselinum crispum leaves by using response surface methodology. A Box–Behnken design was applied to optimize the extraction conditions with regards to the extraction time, temperature, solvent mixture, and sample to solvent ratio with the use of ultrasound-assisted extraction. An analytical HPLC-PDA methodology was developed to accurately quantify the phenolic compounds in the extracts. Identification of the most abundant phenolic compounds (luteolin, caffeic acid, and apigenin) was also performed with an UPLC-Q-TOF MS methodology. The predicted optimal conditions of the statistical model were identified, and the predicted values confirmed. Actual values of 23.92 ± 1.86 with 100 mL/g, 40% ethanol, 70 °C and 40 min, 19.10 ± 0.75 with 20 mL/g, 0% ethanol, 70 °C and 40 min, and 25.29 ± 1.82 μg/g dry parsley with and 100 mL/g, 0% ethanol, 25 °C and 40 min of luteolin, caffeic acid, and apigenin respectively, were estimated. Total phenolic content and antioxidant activities by DPPH, ABTS, FRAP, and CUPRAC assays were performed for the extracts. The extracts acquired under the optimum conditions contain an adequate quantity of phenolic compounds that could be used in the production of functional foods by food enrichment prcedure

    Qualitative Multiresidue Screening Method for 143 Veterinary Drugs and Pharmaceuticals in Milk and Fish Tissue Using Liquid Chromatography Quadrupole-Time-of-Flight Mass Spectrometry

    No full text
    A wide-scope screening methodology has been developed for the identification of veterinary drugs and pharmaceuticals in fish tissue and milk using ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS). The method was validated using a qualitative approach at two concentration levels. The detection of the residues was accomplished by retention time, accurate mass, and the isotopic fit using an in-house database. Product-ion spectra were used for unequivocal identification of the compounds. Generic sample treatment was applied. The majority of the compounds were successfully detected and identified at concentration levels of 150 ng mL<sup>–1</sup> in milk and 200 μg kg<sup>–1</sup> in fish (>80% of the compounds in both matrices), whereas satisfactory results were also obtained at concentration levels of 15 ng mL<sup>–1</sup> in milk and 20 μg kg<sup>–1</sup> in fish (>60% of the compounds detected and identified)

    Development and validation of a high-throughput headspace solid-phase microextraction gas chromatography-mass spectrometry methodology for target and suspect determination of honey volatiles

    No full text
    The determination of volatile compounds is essential for the chemical characterisation of honey's aroma and its correlation to its sensory profile and botanical origin. The present study describes the development, optimization and validation of a new, simple and reliable method for the determination of volatile compounds in honey using headspace solid-phase microextraction combined with gas chromatography/mass spectrometry (HS-SPME-GC-MS). The optimization of the SPME conditions showed that the ratio of honey: water (2:1) and the incubation temperature (60 °C) are the most critical parameters. Gas chromatography was performed with medium polar Varian CP-Select 624 column and the experimental Retention Index for a number of compounds was determined as an additional identification feature for suspect analysis. The simultaneous use of four internal standards chlorobenzene, benzophenone, 2-pentanol and 4-methyl-2-pentanone and matrix matched calibration enhanced method accuracy achieving recoveries 73–114 % and repeatability ranging between 3.9 and 19 % relative standard deviations. Furthermore, the superiority of the HS-SPME to static head space technique was verified exhibiting four-to nine-fold higher sensitivity. Target and suspect screening were applied to 30 Greek honey samples and 53 volatile compounds belonging to different chemical classes, such as alkanes, aldehydes, ketones, alcohols, and esters were identified with quantified concentrations ranging between 3.1 μg kg−1 (Limonene) up to 20 mg kg−1 (Benzeneacetaldehyde). Among the new findings is the detection of Myrtenol in Greek pine honey and 2,3-butanediol in Greek oak honey. The developed analytical protocol can be a valuable tool in order to chemically characterize honey based on the volatile content

    Comparative Assessment of Antibiotic Residues Using Liquid Chromatography Coupled with Tandem Mass Spectrometry (LC-MS/MS) and a Rapid Screening Test in Raw Milk Collected from the North-Central Algerian Dairies

    No full text
    Antibiotic residues in milk are a major health threat for the consumer and a hazard to the dairy industry, causing significant economic losses. This study aims to assess the presence of antibiotic residues in raw milk comparatively by a rapid screening test (BetaStar® Combo) and Liquid Chromatography coupled with Tandem Mass Spectrometry (LC-MS/MS). A total of 445 samples were collected from 3 dairy companies of north-central Algeria (Algiers, Blida, Boumerdes), and they were rapidly screened for β-lactams and tetracyclines; 52 samples, comprising 34 positive tanker-truck milk and 18 negative bulk-tank milk were tested by LC-MS/MS, which revealed 90.4% were contaminated (n = 47) and 55.3% exceeded the Maximum Residue Limit (MRL). The β-lactams as parent compounds and their metabolites were the most frequently detected with maximum value for cloxacillin (1231 µg/kg) and penicillin G (2062 µg/kg). Under field condition, the false-positive results, particularly for tetracyclines, seems to be related to milk samples displaying extreme acidity values (≥19°D) or fat-level fluctuations (2.7 g/100 mL and 5.6–6.2 g/100 mL). Despite a relatively low prevalence (7.64%) of residues using the rapid test, the detection by LC-MS/MS of flumequine (52 µg/kg), cefaclor (maximum 220 µg/kg) and metabolites of β-lactams at high levels should lead to reflections on the control of their human and environmental toxicological effects
    corecore