6 research outputs found

    Regulation of Proteases after Spinal Cord Injury

    No full text
    Spinal cord injury is a major medical problem worldwide. Unfortunately, we still do not have suitable therapeutic agents for the treatment of spinal cord injury and prevention of its devastating consequences. Scientists and physicians are baffled by the challenges of controlling progressive neurodegeneration in spinal cord injury, which has not been healed with any currently-available treatments. Although extensive work has been carried out to better understand the pathophysiology of spinal cord injury, our current understanding of the repair mechanisms of secondary injury processes is still meager. Several investigators reported the crucial role played by various proteases after spinal cord injury. Understanding the beneficial and harmful roles these proteases play after spinal cord injury will allow scientists to plan and design appropriate treatment strategies to improve functional recovery after spinal cord injury. This review will focus on various proteases such as matrix metalloproteinases, cysteine proteases, and serine proteases and their inhibitors in the context of spinal cord injury

    Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Upregulate Myelin Basic Protein in Shiverer Mice

    No full text
    Human umbilical cord blood is a rich source of pluripotent mesenchymal stem cells and possesses significant advantages over other stem cell sources such as the embryo and bone marrow. In the present study, we aimed to investigate the potential of human umbilical cord blood-derived pluripotent mesenchymal stem cells (hUCB) to myelinate the axons of shiverer mice brains. We also investigated the effect of hUCB treatment on regulation of myelin basic protein in vitro in PC-12 cells, which are normally not myelinated. The results of our study clearly demonstrated that hUCB survive and migrate in vivo and has the potential to myelinate shiverer mice brains. The expression level of myelin basic protein, a major component of the myelin sheath, has been significantly increased in vivo and in vitro as revealed by Western blot, reverse transcription (RT)-polymerase chain reaction, immunohistochemistry, immunocytochemistry, and fluorescent in situ hybridization results. Further, transmission electron microscopic images of hUCB-treated shiverer mice brains showed several layers of myelin around the axons compared with a thin and fragmented layer of myelin in untreated animals. Moreover, the frequency of shivering was diminished 1 month after hUCB treatment in shiverer mice. Our results strongly indicated that hUCB transplantation could be an effective means of treating demyelinating or hypomyelinating disorders

    Abstracts of National Conference on Research and Developments in Material Processing, Modelling and Characterization 2020

    No full text
    This book presents the abstracts of the papers presented to the Online National Conference on Research and Developments in Material Processing, Modelling and Characterization 2020 (RDMPMC-2020) held on 26th and 27th August 2020 organized by the Department of Metallurgical and Materials Science in Association with the Department of Production and Industrial Engineering, National Institute of Technology Jamshedpur, Jharkhand, India. Conference Title: National Conference on Research and Developments in Material Processing, Modelling and Characterization 2020Conference Acronym: RDMPMC-2020Conference Date: 26–27 August 2020Conference Location: Online (Virtual Mode)Conference Organizer: Department of Metallurgical and Materials Engineering, National Institute of Technology JamshedpurCo-organizer: Department of Production and Industrial Engineering, National Institute of Technology Jamshedpur, Jharkhand, IndiaConference Sponsor: TEQIP-
    corecore