47,128 research outputs found

    New Formulas and Predictions for Running Fermion Masses at Higher Scales in SM, 2HDM, and MSSM

    Get PDF
    Including contributions of scale-dependent vacuum expectation values, we derive new analytic formulas and obtain substantially different numerical predictions for the running masses of quarks and charged-leptons at higher scales in the SM, 2HDM and MSSM. These formulas exhibit significantly different behaviours with respect to their dependence on gauge and Yukawa couplings than those derived earlier. At one-loop level the masses of the first two generations are found to be independent of Yukawa couplings of the third generation in all the three effective theories in the small mixing limit. Analytic formulas are also obtained for running tanβ(μ)\tan\beta(\mu) in 2HDM and MSSM. Other numerical analyses include study of the third generation masses at high scales as functions of low-energy values of tanβ\tan\beta and SUSY scale MS=MZ104M_S=M_Z-10^4 GeV.Comment: 42 pages RevTeX, including 16 figures. Typos corrected and one reference adde

    Comparison of Canonical and Grand Canonical Models for selected multifragmentation data

    Get PDF
    Calculations for a set of nuclear multifragmentation data are made using a Canonical and a Grand Canonical Model. The physics assumptions are identical but the Canonical Model has an exact number of particles, whereas, the Grand Canonical Model has a varying number of particles, hence, is less exact. Interesting differences are found.Comment: 12 pages, Revtex, and 3 postscript figure

    Spatial persistence and survival probabilities for fluctuating interfaces

    Full text link
    We report the results of numerical investigations of the steady-state (SS) and finite-initial-conditions (FIC) spatial persistence and survival probabilities for (1+1)--dimensional interfaces with dynamics governed by the nonlinear Kardar--Parisi--Zhang (KPZ) equation and the linear Edwards--Wilkinson (EW) equation with both white (uncorrelated) and colored (spatially correlated) noise. We study the effects of a finite sampling distance on the measured spatial persistence probability and show that both SS and FIC persistence probabilities exhibit simple scaling behavior as a function of the system size and the sampling distance. Analytical expressions for the exponents associated with the power-law decay of SS and FIC spatial persistence probabilities of the EW equation with power-law correlated noise are established and numerically verified.Comment: 11 pages, 5 figure

    Nonequilibrium Dynamics of the Complex Ginzburg-Landau Equation. I. Analytical Results

    Get PDF
    We present a detailed analytical and numerical study of nonequilibrium dynamics for the complex Ginzburg-Landau (CGL) equation. In particular, we characterize evolution morphologies using spiral defects. This paper (referred to as I\rm I) is the first in a two-stage exposition. Here, we present analytical results for the correlation function arising from a single-spiral morphology. We also critically examine the utility of the Gaussian auxiliary field (GAF) ansatz in characterizing a multi-spiral morphology. In the next paper of this exposition (referred to as II\rm II), we will present detailed numerical results.Comment: 21 pages, 7 figure

    Instability, Intermittency and Multiscaling in Discrete Growth Models of Kinetic Roughening

    Full text link
    We show by numerical simulations that discretized versions of commonly studied continuum nonlinear growth equations (such as the Kardar-Parisi-Zhang equation and the Lai-Das Sarma equation) and related atomistic models of epitaxial growth have a generic instability in which isolated pillars (or grooves) on an otherwise flat interface grow in time when their height (or depth) exceeds a critical value. Depending on the details of the model, the instability found in the discretized version may or may not be present in the truly continuum growth equation, indicating that the behavior of discretized nonlinear growth equations may be very different from that of their continuum counterparts. This instability can be controlled either by the introduction of higher-order nonlinear terms with appropriate coefficients or by restricting the growth of pillars (or grooves) by other means. A number of such ``controlled instability'' models are studied by simulation. For appropriate choice of the parameters used for controlling the instability, these models exhibit intermittent behavior, characterized by multiexponent scaling of height fluctuations, over the time interval during which the instability is active. The behavior found in this regime is very similar to the ``turbulent'' behavior observed in recent simulations of several one- and two-dimensional atomistic models of epitaxial growth. [pacs{61.50.Cj, 68.55.Bd, 05.70.Ln, 64.60.Ht}]Comment: 47 pages + 26 postscript figures, submitted to Phys. Rev.

    Structure of potentials with NN Higgs doublets

    Get PDF
    Extensions of the Standard Model with NN Higgs doublets are simple extensions presenting a rich mathematical structure. An underlying Minkowski structure emerges from the study of both variable space and parameter space. The former can be completely parametrized in terms of two future lightlike Minkowski vectors with spatial parts forming an angle whose cosine is (N1)1-(N-1)^{-1}. For the parameter space, the Minkowski parametrization enables one to impose sufficient conditions for bounded below potentials, characterize certain classes of local minima and distinguish charge breaking vacua from neutral vacua. A particular class of neutral minima presents a degenerate mass spectrum for the physical charged Higgs bosons.Comment: 11 pages. Revtex4. Typos corrected. Few comments adde

    Caloric curve in Au + Au collisions

    Get PDF
    Realistic caloric curves are obtained for 197Au+197Au^{197}Au + ^{197}Au reaction with incident energy ranging from 35 to 130 MeV/nucleon in the dynamic statistical multifragmentation model. It is shown that for excitation energy 3 to 8 MeV/nucleon, the temperature remains constant in the range 5 to 6 MeV, which is close to experiment. The mechanism of energy deposition through the tripartition of colliding system envisaged in this model together with inter-fragment nuclear interaction are found to play important role. A possible signature of liquid-gas phase transition is seen in the specific heat distribution calculated from these caloric curves, and the critical temperature is found to be \sim 6 to 6.5 MeV.Comment: Revtex, 10 pages, 4 postscipt figures, To appear in Phys. Rev. C (Rapid Communications

    The radiation equation of state and loop quantum gravity corrections

    Full text link
    The equation of state for radiation is derived in a canonical formulation of the electromagnetic field. This allows one to include correction terms expected from canonical quantum gravity and to infer implications to the universe evolution in radiation dominated epochs. Corrections implied by quantum geometry can be interpreted in physically appealing ways, relating to the conformal invariance of the classical equations.Comment: 11 pages, 1 figur
    corecore