38,935 research outputs found
3D Weak Gravitational Lensing of the CMB and Galaxies
In this paper we present a power spectrum formalism that combines the full
three-dimensional information from the galaxy ellipticity field, with
information from the cosmic microwave background (CMB). We include in this
approach galaxy cosmic shear and galaxy intrinsic alignments, CMB deflection,
CMB temperature and CMB polarisation data; including the inter-datum power
spectra between all quantities. We apply this to forecasting cosmological
parameter errors for CMB and imaging surveys for Euclid-like, Planck, ACTPoL,
and CoRE-like experiments. We show that the additional covariance between the
CMB and ellipticity measurements can improve dark energy equation of state
measurements by 15%, and the combination of cosmic shear and the CMB, from
Euclid-like and CoRE-like experiments, could in principle measure the sum of
neutrino masses with an error of 0.003 eV.Comment: Accepted to MNRA
Exact Effective Action for (1+1 Dimensional) Fermions in an Abelian Background at Finite Temperature
In an effort to further understand the structure of effective actions for
fermions in an external gauge background at finite temperature, we study the
example of 1+1 dimensional fermions interacting with an arbitrary Abelian gauge
field. We evaluate the effective action exactly at finite temperature. This
effective action is non-analytic as is expected at finite temperature. However,
contrary to the structure at zero temperature and contrary to naive
expectations, the effective action at finite temperature has interactions to
all (even) orders (which, however, do not lead to any quantum corrections). The
covariant structure thus obtained may prove useful in studying 2+1 dimensional
models in arbitrary backgrounds. We also comment briefly on the solubility of
various 1+1 dimensional models at finite temperature.Comment: A few clarifying remarks added;21 page
Comparison of perturbative expansions using different phonon bases for two-site Holstein model
The two-site single-polaron problem is studied within the perturbative
expansions using different standard phonon basis obtained through the Lang
Firsov (LF), modified LF (MLF) and modified LF transformation with squeezed
phonon states (MLFS). The role of these convergent expansions using the above
prescriptions in lowering the energy and in determining the correlation
functions are compared for different values of coupling strength. The
single-electron energy, oscillator wave functions and correlation functions are
calculated for the same system. The applicability of different phonon basis in
different regimes of the coupling strength as well as in different regimes of
hopping are also discussed.Comment: 24 pages (RevTEX), 12 postscript figures, final version accepted in
PRB(2000) Jornal Ref: Phys. Rev. B, 61, 4592-4602 (2000
Effects of Strain coupling and Marginal dimensionality in the nature of phase transition in Quantum paraelectrics
Here a recently observed weak first order transition in doped SrTiO3 is
argued to be a consequence of the coupling between strain and order parameter
fluctuations. Starting with a semi-microscopic action, and using
renormalization group equations for vertices, we write the free energy of such
a system. This fluctuation renormalized free energy is then used to discuss the
possibility of first order transition at zero temperature as well as at finite
temperature. An asymptotic analysis predicts small but a finite discontinuity
in the order parameter near a mean field quantum critical point at zero
temperature. In case of finite temperature transition, near quantum critical
point such a possibility is found to be extremely weak. Results are in accord
with some experimental findings on quantum paraelectrics such as SrTiO3 and
KTaO3.Comment: Revised versio
Supersymmetry and the Chiral Schwinger Model
We have constructed the N=1/2 supersymmetric general Abelian model with
asymmetric chiral couplings. This leads to a N=1/2 supersymmetrization of the
Schwinger model. We show that the supersymmetric general model is plagued with
problems of infrared divergence. Only the supersymmetric chiral Schwinger model
is free from such problems and is dynamically equivalent to the chiral
Schwinger model because of the peculiar structure of the N=1/2 multiplets.Comment: one 9 pages Latex file, one ps file with one figur
Structure of potentials with Higgs doublets
Extensions of the Standard Model with Higgs doublets are simple
extensions presenting a rich mathematical structure. An underlying Minkowski
structure emerges from the study of both variable space and parameter space.
The former can be completely parametrized in terms of two future lightlike
Minkowski vectors with spatial parts forming an angle whose cosine is
. For the parameter space, the Minkowski parametrization enables
one to impose sufficient conditions for bounded below potentials, characterize
certain classes of local minima and distinguish charge breaking vacua from
neutral vacua. A particular class of neutral minima presents a degenerate mass
spectrum for the physical charged Higgs bosons.Comment: 11 pages. Revtex4. Typos corrected. Few comments adde
Bounds for the relative n-th nilpotency degree in compact groups
The line of investigation of the present paper goes back to a classical work
of W. H. Gustafson of the 1973, in which it is described the probability that
two randomly chosen group elements commute. In the same work, he gave some
bounds for this kind of probability, providing information on the group
structure. We have recently obtained some generalizations of his results for
finite groups. Here we improve them in the context of the compact groups.Comment: 9 pages; to appear in Asian-European Journal of Mathematics with
several improvement
Caloric Curves for small systems in the Nuclear Lattice Gas Model
For pedagogical reasons we compute the caloric curve for 11 particles in a
lattice. Monte-Carlo simulation can be avoided and exact results are
obtained. There is no back-bending in the caloric curve and negative specific
heat does not appear. We point out that the introduction of kinetic energy in
the nuclear Lattice Gas Model modifies the results of the standard Lattice Gas
Model in a profound way.Comment: 12 pages, Revtex, including 4 postscript figure
Measuring stellar differential rotation with high-precision space-borne photometry
We introduce a method of measuring a lower limit to the amplitude of surface
differential rotation from high-precision, evenly sampled photometric time
series. It is applied to main-sequence late-type stars whose optical flux
modulation is dominated by starspots. An autocorrelation of the time series was
used to select stars that allow an accurate determination of starspot rotation
periods. A simple two-spot model was applied together with a Bayesian
information criterion to preliminarily select intervals of the time series
showing evidence of differential rotation with starspots of almost constant
area. Finally, the significance of the differential rotation detection and a
measurement of its amplitude and uncertainty were obtained by an a posteriori
Bayesian analysis based on a Monte Carlo Markov Chain approach. We applied our
method to the Sun and eight other stars for which previous spot modelling had
been performed to compare our results with previous ones. We find that
autocorrelation is a simple method for selecting stars with a coherent
rotational signal that is a prerequisite for successfully measuring
differential rotation through spot modelling. For a proper Monte Carlo Markov
Chain analysis, it is necessary to take the strong correlations among different
parameters that exist in spot modelling into account. For the planet-hosting
star Kepler-30, we derive a lower limit to the relative amplitude of the
differential rotation of \Delta P / P = 0.0523 \pm 0.0016. We confirm that the
Sun as a star in the optical passband is not suitable for measuring
differential rotation owing to the rapid evolution of its photospheric active
regions. In general, our method performs well in comparison to more
sophisticated and time-consuming approaches.Comment: Accepted to Astronomy and Astrophysics, 15 pages, 13 figures, 4
tables and an Appendi
- …