21 research outputs found

    Functional exploration of copy number alterations in a Drosophila model of triple negative breast cancer

    Get PDF
    Accounting for 10-20% of breast cancer cases, TNBC is associated with a disproportionate number of breast cancer deaths. One challenge in studying TNBC is its genomic profile: outside of TP53 loss, most cases are characterized by copy number alterations (CNAs), making modeling the disease in whole animals challenging. We computationally analyzed 186 previously identified CNA regions in breast cancer to rank genes within each region by likelihood of acting as a tumor driver. We then used a Drosophila p53-Myc TNBC model to identify 48 genes as functional drivers. To demonstrate the utility of this functional database, we established six 3-hit models; altering candidates led to increased aspects of transformation as well as resistance to the chemotherapeutic drug fluorouracil. Our work provides a functional database of CNA-associated TNBC drivers, and a template for an integrated computational/whole animal approach to identify functional drivers of transformation and drug resistance within CNAs for other tumor types

    MENCA experiment aboard India’s Mars Orbiter Mission

    Get PDF
    The Mars Exospheric Neutral Composition Analyser (MENCA) aboard the Indian Mars Orbiter Mission (MOM) is a quadrupole mass spectrometer-based experiment. Making use of the highly elliptical and low inclination (~150°) orbit of MOM, MENCA will conduct in situ measurements of the composition and radial distribution of the Martian neutral exosphere in the 1–300 amu mass range in the equatorial and low latitudes of Mars. The functionality of MENCA has been tested during the Earth-bound and heliocentric phases of MOM before its operation in the Martian orbit. This article describes the scientific objectives, instrument details, design and development, test and evaluation, and calibration of the MENCA instrument

    Crowdsourced identification of multi-target kinase inhibitors for RET- and TAU- based disease: the Multi-Targeting Drug DREAM Challenge

    Get PDF
    A continuing challenge in modern medicine is the identification of safer and more efficacious drugs. Precision therapeutics, which have one molecular target, have been long promised to be safer and more effective than traditional therapies. This approach has proven to be challenging for multiple reasons including lack of efficacy, rapidly acquired drug resistance, and narrow patient eligibility criteria. An alternative approach is the development of drugs that address the overall disease network by targeting multiple biological targets (‘polypharmacology’). Rational development of these molecules will require improved methods for predicting single chemical structures that target multiple drug targets. To address this need, we developed the Multi-Targeting Drug DREAM Challenge, in which we challenged participants to predict single chemical entities that target pro-targets but avoid anti-targets for two unrelated diseases: RET-based tumors and a common form of inherited Tauopathy. Here, we report the results of this DREAM Challenge and the development of two neural network-based machine learning approaches that were applied to the challenge of rational polypharmacology. Together, these platforms provide a potentially useful first step towards developing lead therapeutic compounds that address disease complexity through rational polypharmacology

    γ-H2AX Kinetics as a Novel Approach to High Content Screening for Small Molecule Radiosensitizers

    Get PDF
    Persistence of γ-H2AX after ionizing radiation (IR) or drug therapy is a robust reporter of unrepaired DNA double strand breaks in treated cells.DU-145 prostate cancer cells were treated with a chemical library ±IR and assayed for persistence of γ-H2AX using an automated 96-well immunocytochemistry assay at 4 hours after treatment. Hits that resulted in persistence of γ-H2AX foci were tested for effects on cell survival. The molecular targets of hits were validated by molecular, genetic and biochemical assays and in vivo activity was tested in a validated Drosophila cancer model.We identified 2 compounds, MS0019266 and MS0017509, which markedly increased persistence of γ-H2AX, apoptosis and radiosensitization in DU-145 cells. Chemical evaluation demonstrated that both compounds exhibited structurally similar and biochemical assays confirmed that these compounds inhibit ribonucleotide reductase. DNA microarray analysis and immunoblotting demonstrates that MS0019266 significantly decreased polo-like kinase 1 gene and protein expression. MS0019266 demonstrated in vivo antitumor activity without significant whole organism toxicity.MS0019266 and MS0017509 are promising compounds that may be candidates for further development as radiosensitizing compounds as inhibitors of ribonucleotide reductase

    Restraining network response to targeted cancer therapies improves efficacy and reduces cellular resistance

    No full text
    A key tool of cancer therapy has been targeted inhibition of oncogene-addicted pathways. However, efficacy has been limited by progressive emergence of resistance as transformed cells adapt. Here, we use Drosophila to dissect response to targeted therapies. Treatment with a range of kinase inhibitors led to hyperactivation of overall cellular networks, resulting in emergent resistance and expression of stem cell markers, including Sox2. Genetic and drug screens revealed that inhibitors of histone deacetylases, proteasome, and Hsp90 family of proteins restrained this network hyperactivation. These “network brake” cocktails, used as adjuncts, prevented emergent resistance and promoted cell death at subtherapeutic doses. Our results highlight a general response of cells, transformed and normal, to targeted therapies that leads to resistance and toxicity. Pairing targeted therapeutics with subtherapeutic doses of broad-acting “network brake” drugs may provide a means of extending therapeutic utility while reducing whole body toxicity. Significance: These findings with a strong therapeutic potential provide an innovative approach of identifying effective combination treatments for cancer. Cancer Res; 78(15); 4344–59. ©2018 AACR

    Spread Spectrum Image Watermarking for Secured Multimedia

    No full text
    Abstract—Digital watermarking is a way to provide the facility of secure multimedia data communication besides its copyright protection approach. The Spread Spectrum modulation principle is widely used in digital watermarking to satisfy the robustness of multimedia signals against various signal-processing operations. Several SS watermarking algorithms have been proposed for multimedia signals but very few works have discussed on the issues responsible for secure data communication and its robustness improvement. The current paper has critically analyzed few such factors namely properties of spreading codes, proper signal decomposition suitable for data embedding, security provided by the key, successive bit cancellation method applied at decoder which have greater impact on the detection reliability, secure communication of significant signal under camouflage of insignificant signals etc. Based on the analysis, robust SS watermarking scheme for secure data communication is proposed in wavelet domain and improvement in secure communication and robustness performance is reported through experimental results. The reported result also shows improvement in visual and statistical invisibility of the hidden data. Keywords—Spread spectrum modulation, spreading code, signal decomposition, security, successive bit cancellation D I

    Chemical genetic discovery of targets and anti-targets for cancer polypharmacology

    No full text
    The complexity of cancer has led to recent interest in polypharmacological approaches for developing kinase-inhibitor drugs; however, optimal kinase-inhibition profiles remain difficult to predict. Using a Ret-kinase-driven Drosophila model of multiple endocrine neoplasia type 2 and kinome-wide drug profiling, here we identify that AD57 rescues oncogenic Ret-induced lethality, whereas related Ret inhibitors imparted reduced efficacy and enhanced toxicity. Drosophila genetics and compound profiling defined three pathways accounting for the mechanistic basis of efficacy and dose-limiting toxicity. Inhibition of Ret plus Raf, Src and S6K was required for optimal animal survival, whereas inhibition of the 'anti-target' Tor led to toxicity owing to release of negative feedback. Rational synthetic tailoring to eliminate Tor binding afforded AD80 and AD81, compounds featuring balanced pathway inhibition, improved efficacy and low toxicity in Drosophila and mammalian multiple endocrine neoplasia type 2 models. Combining kinase-focused chemistry, kinome-wide profiling and Drosophila genetics provides a powerful systems pharmacology approach towards developing compounds with a maximal therapeutic index

    Nek2 Kinase Signaling in Malaria, Bone, Immune and Kidney Disorders to Metastatic Cancers and Drug Resistance: Progress on Nek2 Inhibitor Development

    No full text
    Cell cycle kinases represent an important component of the cell machinery that controls signal transduction involved in cell proliferation, growth, and differentiation. Nek2 is a mitotic Ser/Thr kinase that localizes predominantly to centrosomes and kinetochores and orchestrates centrosome disjunction and faithful chromosomal segregation. Its activity is tightly regulated during the cell cycle with the help of other kinases and phosphatases and via proteasomal degradation. Increased levels of Nek2 kinase can promote centrosome amplification (CA), mitotic defects, chromosome instability (CIN), tumor growth, and cancer metastasis. While it remains a highly attractive target for the development of anti-cancer therapeutics, several new roles of the Nek2 enzyme have recently emerged: these include drug resistance, bone, ciliopathies, immune and kidney diseases, and parasitic diseases such as malaria. Therefore, Nek2 is at the interface of multiple cellular processes and can influence numerous cellular signaling networks. Herein, we provide a critical overview of Nek2 kinase biology and discuss the signaling roles it plays in both normal and diseased human physiology. While the majority of research efforts over the last two decades have focused on the roles of Nek2 kinase in tumor development and cancer metastasis, the signaling mechanisms involving the key players associated with several other notable human diseases are highlighted here. We summarize the efforts made so far to develop Nek2 inhibitory small molecules, illustrate their action modalities, and provide our opinion on the future of Nek2-targeted therapeutics. It is anticipated that the functional inhibition of Nek2 kinase will be a key strategy going forward in drug development, with applications across multiple human diseases
    corecore