38 research outputs found

    Ramsey properties of randomly perturbed graphs: cliques and cycles

    Full text link
    Given graphs H1,H2H_1,H_2, a graph GG is (H1,H2)(H_1,H_2)-Ramsey if for every colouring of the edges of GG with red and blue, there is a red copy of H1H_1 or a blue copy of H2H_2. In this paper we investigate Ramsey questions in the setting of randomly perturbed graphs: this is a random graph model introduced by Bohman, Frieze and Martin in which one starts with a dense graph and then adds a given number of random edges to it. The study of Ramsey properties of randomly perturbed graphs was initiated by Krivelevich, Sudakov and Tetali in 2006; they determined how many random edges must be added to a dense graph to ensure the resulting graph is with high probability (K3,Kt)(K_3,K_t)-Ramsey (for t≥3t\ge 3). They also raised the question of generalising this result to pairs of graphs other than (K3,Kt)(K_3,K_t). We make significant progress on this question, giving a precise solution in the case when H1=KsH_1=K_s and H2=KtH_2=K_t where s,t≥5s,t \ge 5. Although we again show that one requires polynomially fewer edges than in the purely random graph, our result shows that the problem in this case is quite different to the (K3,Kt)(K_3,K_t)-Ramsey question. Moreover, we give bounds for the corresponding (K4,Kt)(K_4,K_t)-Ramsey question; together with a construction of Powierski this resolves the (K4,K4)(K_4,K_4)-Ramsey problem. We also give a precise solution to the analogous question in the case when both H1=CsH_1=C_s and H2=CtH_2=C_t are cycles. Additionally we consider the corresponding multicolour problem. Our final result gives another generalisation of the Krivelevich, Sudakov and Tetali result. Specifically, we determine how many random edges must be added to a dense graph to ensure the resulting graph is with high probability (Cs,Kt)(C_s,K_t)-Ramsey (for odd s≥5s\ge 5 and t≥4t\ge 4).Comment: 24 pages + 12-page appendix; v2: cited independent work of Emil Powierski, stated results for cliques in graphs of low positive density separately (Theorem 1.6) for clarity; v3: author accepted manuscript, to appear in CP

    Almost-Fisher families

    Full text link
    A classic theorem in combinatorial design theory is Fisher's inequality, which states that a family F\mathcal F of subsets of [n][n] with all pairwise intersections of size λ\lambda can have at most nn non-empty sets. One may weaken the condition by requiring that for every set in F\mathcal F, all but at most kk of its pairwise intersections have size λ\lambda. We call such families kk-almost λ\lambda-Fisher. Vu was the first to study the maximum size of such families, proving that for k=1k=1 the largest family has 2n−22n-2 sets, and characterising when equality is attained. We substantially refine his result, showing how the size of the maximum family depends on λ\lambda. In particular we prove that for small λ\lambda one essentially recovers Fisher's bound. We also solve the next open case of k=2k=2 and obtain the first non-trivial upper bound for general kk.Comment: 27 pages (incluiding one appendix

    Colouring set families without monochromatic k-chains

    Full text link
    A coloured version of classic extremal problems dates back to Erd\H{o}s and Rothschild, who in 1974 asked which nn-vertex graph has the maximum number of 2-edge-colourings without monochromatic triangles. They conjectured that the answer is simply given by the largest triangle-free graph. Since then, this new class of coloured extremal problems has been extensively studied by various researchers. In this paper we pursue the Erd\H{o}s--Rothschild versions of Sperner's Theorem, the classic result in extremal set theory on the size of the largest antichain in the Boolean lattice, and Erd\H{o}s' extension to kk-chain-free families. Given a family F\mathcal{F} of subsets of [n][n], we define an (r,k)(r,k)-colouring of F\mathcal{F} to be an rr-colouring of the sets without any monochromatic kk-chains F1⊂F2⊂⋯⊂FkF_1 \subset F_2 \subset \dots \subset F_k. We prove that for nn sufficiently large in terms of kk, the largest kk-chain-free families also maximise the number of (2,k)(2,k)-colourings. We also show that the middle level, ([n]⌊n/2⌋)\binom{[n]}{\lfloor n/2 \rfloor}, maximises the number of (3,2)(3,2)-colourings, and give asymptotic results on the maximum possible number of (r,k)(r,k)-colourings whenever r(k−1)r(k-1) is divisible by three.Comment: 30 pages, final versio

    Intersecting families of discrete structures are typically trivial

    Full text link
    The study of intersecting structures is central to extremal combinatorics. A family of permutations F⊂Sn\mathcal{F} \subset S_n is \emph{tt-intersecting} if any two permutations in F\mathcal{F} agree on some tt indices, and is \emph{trivial} if all permutations in F\mathcal{F} agree on the same tt indices. A kk-uniform hypergraph is \emph{tt-intersecting} if any two of its edges have tt vertices in common, and \emph{trivial} if all its edges share the same tt vertices. The fundamental problem is to determine how large an intersecting family can be. Ellis, Friedgut and Pilpel proved that for nn sufficiently large with respect to tt, the largest tt-intersecting families in SnS_n are the trivial ones. The classic Erd\H{o}s--Ko--Rado theorem shows that the largest tt-intersecting kk-uniform hypergraphs are also trivial when nn is large. We determine the \emph{typical} structure of tt-intersecting families, extending these results to show that almost all intersecting families are trivial. We also obtain sparse analogues of these extremal results, showing that they hold in random settings. Our proofs use the Bollob\'as set-pairs inequality to bound the number of maximal intersecting families, which can then be combined with known stability theorems. We also obtain similar results for vector spaces.Comment: 19 pages. Update 1: better citation of the Gauy--H\`an--Oliveira result. Update 2: corrected statement of the unpublished Hamm--Kahn result, and slightly modified notation in Theorem 1.6 Update 3: new title, updated citations, and some minor correction

    Enumerating extensions of mutually orthogonal Latin squares

    Get PDF
    Two n×n Latin squares L1,L2 are said to be orthogonal if, for every ordered pair (x, y) of symbols, there are coordinates (i, j) such that L1(i,j)=x and L2(i,j)=y. A k-MOLS is a sequence of k pairwise-orthogonal Latin squares, and the existence and enumeration of these objects has attracted a great deal of attention. Recent work of Keevash and Luria provides, for all fixed k, log-asymptotically tight bounds on the number of k-MOLS. To study the situation when k grows with n, we bound the number of ways a k-MOLS can be extended to a (k+1)-MOLS. These bounds are again tight for constant k, and allow us to deduce upper bounds on the total number of k-MOLS for all k. These bounds are close to tight even for k linear in n, and readily generalise to the broader class of gerechte designs, which include Sudoku squares
    corecore