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Abstract
Two n × n Latin squares L1, L2 are said to be orthogonal if, for every ordered pair (x, y) of
symbols, there are coordinates (i, j) such that L1(i, j) = x and L2(i, j) = y. A k-MOLS
is a sequence of k pairwise-orthogonal Latin squares, and the existence and enumeration
of these objects has attracted a great deal of attention. Recent work of Keevash and Luria
provides, for all fixed k, log-asymptotically tight bounds on the number of k-MOLS. To study
the situation when k grows with n, we bound the number of ways a k-MOLS can be extended
to a (k+1)-MOLS. These bounds are again tight for constant k, and allow us to deduce upper
bounds on the total number of k-MOLS for all k. These bounds are close to tight even for
k linear in n, and readily generalise to the broader class of gerechte designs, which include
Sudoku squares.
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1 Introduction

Latin squares have a long and storied history in combinatorics, sharing connections to several
other areas of mathematics and enjoying applications in statistics and experimental design.
In particular, orthogonal Latin squares are equivalent to many other classical structures in
design theory, and their study dates back to Euler. In this paper we shall answer questions
concerning the enumeration of orthogonal Latin squares, but we first present some of the
relevant background.

1.1 Background and related work

Webegin by recalling the definition of a Latin square, more in an effort to present our notation
than in belief that you, the reader, do not know what a Latin square is.

Definition 1 A Latin square of order n is an n × n matrix with entries in [n] such that each
x ∈ [n] appears exactly once in every row and in every column.

It is not difficult to see that Latin squares exist for all n; indeed, a rich class of constructions
are given by the Cayley tables of groups. We refer the reader to [40] for more definitions,
results and proofs related to Latin squares, noting only that the number of Latin squares is
log-asymptotically given by

L(n) =
(
(1 + o(1))

n

e2

)n2
. (1)

Ryser [38] showed that the lower bound follows from Van der Waerden’s conjecture on per-
manents of matrices, which was famously later proven by Egorychev [14] and Falikman [15].
The upper bound is also closely related to permanents, as it is a consequence of Brégman’s
Theorem [5] (see [40, Chapter 17] for details).

In this paper, we will be concerned with orthogonal Latin squares.

Definition 2 Two Latin squares L, L ′ of order n are said to be orthogonal if, for all pairs
(x, y) ∈ [n]2, there exist unique i, j ∈ [n] such that L(i, j) = x and L ′(i, j) = y. In this
case, L ′ is said to be an orthogonal mate of L .

A k-tuple of Latin squares (L1, . . . , Lk) forms a system of k mutually orthogonal Latin
squares, or a k-MOLS, if for all 1 ≤ i < j ≤ k, the squares Li and L j are orthogonal.

Orthogonal Latin squares have proven interesting from both a theoretical and a practical
point of view: they are related to various other classes of structures in design theory, some of
which we shall encounter later, while having applications in many real-world problems. In
light of these applications, the early research in this area concerned the existence of k-MOLS.
In particular, there was much interest in the maximum size of a set of mutually orthogonal
Latin squares; that is, the function N (n) = max{k : a k-MOLS of order n exists}.

It iswell-known that N (n) ≤ n−1. Indeed, suppose (L1, . . . , Lk) is a k-MOLS.Observing
that orthogonality is preserved under permutations of the symbols within each square, we
may assume that the first row of each square is [1, 2, . . . , n]. Considering the entries in
position (2, 1), we find that all Li (2, 1)must be distinct, by orthogonality, and different from
1, since the Li are Latin squares. Hence k ≤ n − 1.

One can further prove that one has equality if and only if a projective plane of order
n exists. This shows that the precise determination of the function N (n) is likely to be
difficult, as the existence of projective planes for orders n that are not prime powers is
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Enumerating extensions of mutually orthogonal Latin squares 2189

a longstanding open problem. Still, several polynomial lower bounds on N (n) with ever-
improving exponents appear in the literature [8,37,43], with the largest one due to Lu [31],
who proved N (n) = Ω(n1/14.3).

Given that large sets of mutually orthogonal Latin squares exist, it is natural to extend (1)
and enumerate k-MOLS for k ≥ 2. Early work in this direction was undertaken by Donovan
and Grannell [10], who constructed many k-MOLS, and also sought to bound the number of
orthogonal mates a Latin square can have. An important component of their argument is an
upper bound on number of transversals in a Latin square, where a transversal is a selection of
n cells from the square, with no two sharing the same row, column or symbol. Taranenko [39]
later proved a sharp upper bound on the number of transversals in a Latin square, which,
when used in Donovan and Grannell’s proof, shows that a Latin square can have at most

(
(1 + o(1))

n

e2+1/e

)n2
(2)

orthogonal mates. Coupled with (1), this can be used to give upper bounds on the number
of pairs of orthogonal Latin squares and, more generally, the number of k-MOLS (since in a
k-MOLS (L1, . . . , Lk), the Latin squares L2, . . . , Lk must all be orthogonal mates of L1).

More recently, tight bounds on the number of k-MOLS follow from the breakthroughs of
Luria [32] and Keevash [26]. Through an elegant entropic argument, Luria gives a general
upper bound on the number of perfect matchings a regular r -uniform hypergraph can have.
Assuming certain pseudorandom conditions, Keevash provides a matching lower bound,
coupling randomized constructions with the use of absorbers. When applied to the enumera-
tion of k-MOLS, their theorems imply the following result, where we denote by L(k)(n) the
number of k-MOLS of order n.

Theorem 1 [27,32] For every fixed k ∈ N, the number of k-MOLS of order n is

L(k)(n) =
(

(1 + o(1))
nk

e(
k+2
2 )−1

)n2

. (3)

1.2 Results

The one drawback of Theorem 1 is that both the lower and upper bounds in (3) require k to be
fixed as n tends to infinity. In this paper we seek upper bounds that hold when k grows with
n. We combine the approach of Donovan and Grannell [10] with the method of Luria [32],
using entropy to bound the number of ways of extending a k-MOLS by adding an additional
Latin square.

Before presenting our upper bound, let us discuss a lower bound for this number of
extensions. Since every (k + 1)-MOLS contains a k-MOLS as a prefix, Theorem 1 implies
that, for fixed k ∈ N, the average number of extensions of a k-MOLS to a (k + 1)-MOLS is
at least

L(k+1)(n)

L(k)(n)
=

(
(1 + o(1))

n

ek+2

)n2
. (4)

This clearly gives a lower bound for the maximum number of such extensions. In the
following theorem, we provide an upper bound that is valid for all k. (Throughout this paper,
all logarithms are to the base e.)

123



2190 S. Boyadzhiyska et al.

Theorem 2 For 0 ≤ k ≤ n − 2, the logarithm of the number of ways to extend a k-MOLS of
order n to a (k + 1)-MOLS is at most

n2
∫ 1

0
log(1 + (n − 1)tk+2)dt .

We will estimate the value of this integral in Lemma 1. As a corollary, combining Theo-
rem 2 with (4) allows us to determine the number of extensions of a k-MOLS of fixed size.
In particular, setting k = 1 bounds the number of orthogonal mates a Latin square can have,
sharpening the bound in (2).

Corollary 1 For every fixed k ∈ N, the maximum number of ways to extend a k-MOLS of
order n to a (k + 1)-MOLS is

(
(1 + o(1))

n

ek+2

)n2
.

As previously stated, our primary goal is to bound the number of k-MOLS when k grows
with n. We can do so by building the k-MOLS one Latin square at a time, using Theorem 2
to bound the number of choices at each step. In this way we can recover the upper bound of
Theorem 1 when k is constant, but the main novelty of this paper is the following extension
to larger values of k.

Corollary 2 As n → ∞,

(i) log L(k)(n) ≤
(
k log n − (k+2

2

) + 1 + k2n−1/(k+2)
)
n2 if k = o(log n),

(ii) log L(k)(n) ≤ (c(β) + o(1)) kn2 log n if k = β log n, for fixed β > 0,
(iii) log L(k)(n) ≤ ( 1

2 + o(1)
)
(log k − log log n) n2 log2 n if k = ω(log n),

where in (ii) we define c(β) = 1 − β−1
∫ β

0 x(1 − e−1/x )dx ∈ [0, 1].

Note that we trivially have L(k)(n) ≤ L(n)k , which, in light of (1), gives the upper bound
log L(k)(n) ≤ kn2 log n. Corollary 2 provides a significant improvement over this trivial
bound. Furthermore, part (i) shows that the upper bound from Theorem 1 is valid whenever

k = o
(

log n
log log n

)
.

It is well-known that mutually orthogonal Latin squares are equivalent to many other
combinatorial structures such as transversal designs, nets and orthogonal arrays, while also
being related to certain error correcting codes and affine and projective planes (see [40]), and
so our results give upper bounds for the number of structures in each of these classes. In fact,
we shall prove Theorem 2 for the more general class of gerechte designs (see Theorem 3),
which allow us to, for instance, bound the number of sets of mutually orthogonal Sudoku
squares. We discuss this particular extension further in our concluding remarks.

1.3 Organization

The remainder of this paper is organized as follows. In Sect. 2, we introduce gerechte designs
and discuss an equivalent formulation that will be more convenient for our proof. We also
review some basic notions about our main tool, entropy. Following that, we prove our results
in Sect. 3. We then provide explicit constructions of Latin squares with many orthogonal
mates in Sect. 4, and close with some further remarks and open problems in Sect. 5.
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Enumerating extensions of mutually orthogonal Latin squares 2191

2 Designs and tools

In this section we will introduce the frameworks of gerechte designs and orthogonal arrays,
in which we will prove a generalization of Theorem 2. We will also review some definitions
and results regarding entropy that we shall require in our proofs.

2.1 Gerechte designs

Gerechte designs, defined below, are a special class of Latin squares introduced by Behrens
in [2].

Definition 3 Let [n]2 = R1 � · · · � Rn be a partition of [n]2 into n regions Ri such that
|Ri | = n for all i ∈ [n]. A gerechte design of order n with respect to this partition is a Latin
square with the additional property that each symbol appears exactly once in each region Ri .

There are several natural examples of gerechte designs. For instance, if one takes the
regions to be the n rows (or columns) of the n × n grid, a gerechte design is simply a Latin
square. If n = m2, and one partitions the grid into n subsquares of dimension m × m, the
corresponding gerechte designs are known as Sudoku squares of order n. Finally, given a
Latin square L , define the regions Rt = {(i, j) : L(i, j) = t} for all t ∈ [n]. A gerechte
design with respect to this partition is an orthogonal mate of L .

It is natural to study orthogonality between Latin squares that are gerechte designs with
respect to the same partition and, more generally, to consider systems of mutually orthogonal
gerechte designs. Bailey, Cameron and Connelly [1] generalized the function N (n) to the
setting of gerechte designs, giving upper bounds on the size of a set of mutually orthogonal
gerechte designs that are tight for some orders n.

The counting questions concerning Latin squares discussed in the introduction can also
be generalized to gerechte designs, and our method will allow us to derive bounds in this
broader setting. For this, note that an n × n square with entries in [n] is a Latin square if and
only if it is orthogonal (in the sense of Definition 2) to the square Sn , given by Sn(i, j) = i
for all i, j ∈ [n], and its transpose. Similarly, it is not difficult to show that an n × n square
with entries in [n] is a gerechte design with respect to the regions R1, . . . , Rn if and only if
it is orthogonal to the squares Sn , STn , and B, where B is given by B(i, j) = t if (i, j) ∈ Rt .
Note that, while the squares Sn and STn are orthogonal to each other, the square B need not
be orthogonal to either (that is, B need not be a Latin square).

2.2 Orthogonal arrays and nearly orthogonal arrays

When adding a square to a set of mutually orthogonal gerechte designs, we need to ensure
three properties: that it is a Latin square, that it respects the regions of the design, and that
it is orthogonal to the previous squares. For our proof, it will be helpful to use an equivalent
but more symmetric formulation of mutually orthogonal gerechte designs, where these three
properties all take the same form. We begin in the setting of mutually orthogonal Latin
squares.

Definition 4 Let x, y be vectors in [n]n2 . We say that x and y are orthogonal if, for all pairs
(s, t) ∈ [n]2, there exists a unique index � such that x� = s and y� = t . An orthogonal
array OA(n, d) is an n2 × d array A with entries in [n] such that all pairs of its columns are
orthogonal.
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2192 S. Boyadzhiyska et al.

Wenote that in the literature orthogonal arrays are often definedmore generally andDefinition
4 describes what is known as an orthogonal array with strength two and index one. For the
sake of simplicity, we omit the general definition and refer the reader to [20] for more about
orthogonal arrays.

Given a k-MOLS (L1, . . . , Lk) of order n, we can construct an orthogonal array
OA(n, k+2)by taking, for all (i, j) ∈ [n]2, the vectors [i, j, L1(i, j), L2(i, j), . . . , Lk(i, j)]
as rows of the orthogonal array (and ordering them lexicographically). Similarly, given
an n2 × (k + 2) orthogonal array A, we can construct a k-MOLS of order n by setting
L j (A(�, 1), A(�, 2)) = A(�, j + 2) for all 1 ≤ � ≤ n2 and 1 ≤ j ≤ k (in fact, any two
columns of the orthogonal array can be used to coordinatize the Latin squares; here we use the
first two). Notice that distinct sequences of mutually orthogonal Latin squares correspond to
distinct orthogonal arrays with first two columns v1 = [1, . . . , 1, 2, . . . , 2, . . . , n, . . . , n]T
and v2 = [1, 2, . . . , n, 1, 2, . . . , n, . . . , 1, 2, . . . , n]T , and hence the number of k-MOLS of
order n is the same as the number of orthogonal arrays OA(n, k + 2) with first columns v1
and v2.

We now extend these ideas to mutually orthogonal gerechte designs. Let v3 be a vector in
[n]n2 with each integer in [n] appearing n times. Note that v3 determines a partition of the
elements of [n2] (and thus [n]2, after we fix a linear ordering of this set) into n equally-sized
regions. From the equivalence between mutually orthogonal Latin squares and orthogonal
arrays and the discussion at the end of Sect. 2.1, we can conclude that an OA(n, k + 2),
whose first two columns are v1 and v2, and in which all other columns are also orthogonal
to v3, is equivalent to k mutually orthogonal gerechte designs with respect to the partition
determined by v3. For notational convenience, we add the column v3 to the array and call the
resulting structure an n2 × (k + 3) nearly orthogonal array.

Definition 5 Given n ∈ N and d ≥ 3, a nearly orthogonal array NOA(n, d) is an n2 × d
array A with symbols [n] such that:

(a) the first column is v1 and the second column is v2, as defined above,
(b) each symbol in [n] appears exactly n times in the third column v3, and
(c) for all i ≥ 4, the i th column vi is orthogonal to all other columns in A.

Again, it follows that the number of nearly orthogonal arrays NOA(n, k + 3) is equal to
the number of sets of k mutually orthogonal gerechte designs with respect to the partition
defined by v3.

2.3 Entropy

The proof of our main result is based on entropy. This method has previously given good
asymptotic upper bounds for similar problems; for instance, it is used in [36] to prove Brég-
man’s Theorem on the permanent of a matrix (which yields an asymptotically tight upper
bound on the number of Latin squares), in [28] to show an upper bound on the number of
Steiner triple systems, later shown to be tight in [27], and in [17] to provide a simpler proof
of Taranenko’s result on the maximum number of transversals in a Latin square, also shown
to be tight in the same paper; see also [32] for some further applications. In this section, we
review some basic facts about entropy that will be used in our proof. For more on entropy,
see [9].
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Enumerating extensions of mutually orthogonal Latin squares 2193

Let X be a discrete random variable taking values in a given finite set S, and let p(x) =
Pr[X = x] for all x ∈ S. The (base e) entropy of X is given by

H(X) = −
∑
x∈S

p(x) log p(x) = −E[log p(X)],

where we adopt the convention that 0 log 0 = 0. The entropy of X can be seen as a measure
of the amount of information the random variable encodes. It is not difficult to show that

H(X) ≤ log |R(X)|, (5)

where R(X) = {x ∈ S : p(x) > 0} is the range of the random variable, with equality if and
only if X is uniformly distributed over R(X).

This definition can be extended to multiple random variables in the natural way.We define
the joint entropy of two random variables X and Y to be

H(X , Y ) = −
∑
x,y

p(x, y) log p(x, y) = −E[log p(X , Y )],

where p(x, y) = Pr[X = x, Y = y] denotes the joint distribution of X and Y .
The conditional entropy of X given Y is defined to be

H(X |Y ) = Ey∼Y [H(X |Y = y)] =
∑
y

Pr[Y = y]H(X |Y = y).

Conditional entropy gives us a way to measure how much additional information we expect
to learn from X once we know the value of Y . It is a simple exercise to show that the joint
entropy and the conditional entropy of several randomvariables satisfy the following equality,
known as the chain rule:

H(X1, . . . , Xn) =
n∑

i=1

H(Xi |X1, . . . , Xi−1).

We end this section by outlining the basic idea behind counting proofs based on entropy.
Suppose we want to obtain a bound on the size of a set S. We sample an element X ∈ S
uniformly at random. By the above discussion, we have H(X) = log |S|, and so an upper
bound on the entropy H(X) yields an upper bound on |S|. To bound H(X), we break up the
random variable X into simpler random variables; the chain rule then allows us to consider
these new random variables one at a time.

3 Proofs of our results

We now use the material from the previous section to prove Theorem 2 and its corollaries.

3.1 Bounding the number of extensions

In the language of orthogonal arrays, Theorem 2 is a statement about the number of ways to
extend an orthogonal array by one column. We will in fact prove the following more general
result, bounding the number of ways to extend a nearly orthogonal array by one column.
Indeed, by inserting a copy of the first column in the third column (and reordering the rows
if needed), one obtains a nearly orthogonal array from an orthogonal array.
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2194 S. Boyadzhiyska et al.

Theorem 3 Given n ∈ N and d ≥ 3, let A be a nearly orthogonal array NOA(n, d). For
each row � ∈ [n2], define

r� = | {s 
= � : A(s, 1) = A(�, 1) and A(s, 3) = A(�, 3)} |, and

c� = | {s 
= � : A(s, 2) = A(�, 2) and A(s, 3) = A(�, 3)} |.
Then the logarithm of the number of ways to extend A to a nearly orthogonal array with
d + 1 columns is at most

n2∑
�=1

∫ 1

0
log(1 + (r� + c�)t

d−1 + (n − r� − c� − 1)td)dt .

Observe that in the gerechte design setting, for a cell � ∈ [n]2, r� counts the number of
other cells in the same row and region as �, while c� counts the number of cells sharing the
same column and region.

Before proving Theorem 3, we quickly derive Theorem 2.

Proof of Theorem 2 As previously mentioned, a Latin square is a gerechte design with respect
to the partition of the cells into their rows. A k-MOLS is thus equivalent to an NOA(n, k+3)
with v3 = v1, and an extension to a (k+1)-MOLS corresponds to adding a column to obtain
an NOA(n, k + 4).

We can thus apply Theorem 3 with d = k + 3 ≥ 3. For our choice of v3, we have
r� = n−1 and c� = 0 for all � ∈ [n2]. Substituting in these values, the bound on the number
of extensions is

n2∑
�=1

∫ 1

0
log(1 + (n − 1)tk+2)dt = n2

∫ 1

0
log(1 + (n − 1)tk+2)dt,

as required. ��
We now proceed to the proof of the general theorem.

Proof of Theorem 3 Let A be as given, and let S denote the set of column vectors that are
valid extensions for A. Our goal is to bound |S|. We can assume S 
= ∅, otherwise we are
done. Let X ∈ S be chosen uniformly at random. Then H(X) = log |S|, and so it suffices to
bound the entropy of X . We will expose the coordinates of X one at a time, using the chain
rule to express the total entropy H(X) as the sum of the conditional entropies from each
successive reveal.

For � ∈ [n2], we denote the �th coordinate of X by X� and, given a permutation π of [n2],
we reveal the coordinates in the order Xπ(1), Xπ(2), . . . , Xπ(n2). The chain rule then gives

log |S| = H(X) =
n2∑
j=1

H(Xπ( j)|Xπ(s) : s < j)

=
n2∑
j=1

E(xπ(s)∼Xπ(s):s< j)
[
H(Xπ( j)|Xπ(s) = xπ(s) : s < j)

]
. (6)

Given x ∈ [n]n2 , let Rπ( j)(π, x) = R(Xπ( j)|Xπ(s) = xπ(s) : s < j) denote the range of this
conditional random variable, that is,

Rπ( j)(π, x) = {
y ∈ [n] : ∃ Y ∈ S : Yπ( j) = y and ∀s < j, Yπ(s) = xπ(s)

}
,
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and let Nπ( j)(π, x) = ∣∣Rπ( j)(π, x)
∣∣ be the size of this range. Note that Rπ( j)(π, x), and

hence also Nπ( j)(π, x), only depends on the first j −1 coordinates of x with respect to π ; for
s ≥ j , the values xπ(s) can be chosen arbitrarily without changing the range of the random
variable.

Thus, by (5), we can bound the conditional entropy by H(Xπ( j)|Xπ(s) = xπ(s) : s < j) ≤
log

(
Nπ( j)(π, x)

)
for all x ∈ [n]n2 . Substituting this into (6) and reordering the sum gives

log |S| ≤
n2∑
j=1

∑

x∈[n]n2
Pr[X = x] log (

Nπ( j)(π, x)
) =

n2∑
�=1

EX
[
log (N�(π, x))

]
.

This bound holds for any permutation π , and thus it holds when we average over the
choice of π . As our calculations are more convenient in the continuous setting, we sample the
uniformly random permutation of [n2] by choosing a vector α = (α�)

n2
�=1 with α� ∼ U [0, 1]

for all � and defining πα = π to be such that απ(1) > απ(2) > · · · > απ(n2). We then have

log |S| ≤ Eα

⎡
⎣

n2∑
�=1

EX [log(N�(π, x))]
⎤
⎦ =

n2∑
�=1

EX
[
Eα[log(N�(π, x))]]

=
n2∑

�=1

EX
[
Eα�

[Eα|α�
[log(N�(π, x))]]] ≤

n2∑
�=1

EX
[
Eα�

[log(Eα|α�
[N�(π, x)])]] ,

where the last inequality follows from Jensen’s inequality and the concavity of y �→ log y.
It therefore suffices to show that, for all � ∈ [n2] and all x ∈ S, we have

Eα�
[log(Eα|α�

[N�(π, x)])] ≤
∫ 1

0
log(1 + (r� + c�)t

d−1 + (n − r� − c� − 1)td)dt . (7)

We first estimate the inner expectation Eα|α�
[N�(π, x)] = Eα[N�(π, x)|α�]. By the

linearity of expectation, this is equal to
∑
y∈[n]

P [y ∈ R�(π, x)|α�]. Unfortunately, it is not

straightforward to determine whether or not y ∈ R�(π, x), and so we shall instead use a
simple necessary condition that we call availability.

Recall that for the column x to be orthogonal to the i th column of A, the pairs (A(s, i), xs)
must be distinct for all s ∈ [n2]. Therefore, if for some symbol y ∈ [n] there is some column
i ∈ [d] and previously exposed coordinate s such that A(s, i) = A(�, i) and xs = y, we
cannot also have x� = y. In this case we declare y unavailable, and observe that we must
have y /∈ R�(π, x). Otherwise, if there is no such column i and coordinate s, we say y is
available. We now seek to compute the probability that a symbol y is available.

Fix a symbol y ∈ [n]. If y is the true value of the entry in the �th coordinate of x , then y
cannot possibly have been ruled out by the previously exposed entries, and is thus available
with probability 1.

Now suppose y ∈ [n] is not the true value of x�. For each i ∈ [d], since x is orthogonal
to the i th column of A, there must be a unique entry si (y) 
= � such that xsi (y) = y and
A(si (y), i) = A(�, i). In order for y to be available, � must be exposed before the entries in
the set S(y) = {si (y) : i ∈ [d]}.

To find the probability of y being available, then, we need to compute the size of S(y).
Suppose for distinct columns 1 ≤ i < j ≤ d we had si (y) = s j (y). It then follows that
A(si (y), i) = A(�, i) and A(si (y), j) = A(�, j), and thus the i th and j th columns cannot
be orthogonal. Since A is nearly orthogonal, the only possibilities are i ∈ {1, 2} and j = 3
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(by definition, all columns after the third column are orthogonal to all others, and the first
two columns are orthogonal by construction).

Therefore |S(y)| = d , unless either s1(y) = s3(y) or s2(y) = s3(y). Note that these
cannot happen simultaneously, as we have ruled out s1(y) = s2(y), and thus in these cases
we have |S(y)| = d − 1. There are r� choices of s 
= � for which A(s, 1) = A(�, 1) and
A(s, 3) = A(�, 3), and hence r� values y for which s1(y) = s3(y). By orthogonality of x
with the first column of A, these values are all distinct. Similarly, there are c� choices for y
with s2(y) = s3(y).

To summarize, there is one choice of y that is available with probability 1, there are r� +c�

choices of y that are available only if the �th coordinate is exposed before some fixed set of
d − 1 other coordinates, and the remaining n − r� − c� − 1 choices of y are available only
if the �th coordinate precedes some d other coordinates.

A coordinate s is revealed after � if αs < α�, which occurs with probability α�. Moreover,
these events are independent for distinct coordinates, and so the probabilities in the latter two
cases are αd−1

� and αd
� respectively. This gives

Eα|α�
[N�(π, x)] =

∑
y∈[n]

Pr [y ∈ R�(π, x)] ≤
∑
y∈[n]

Pr [y is available]

= 1 + (r� + c�)α
d−1
� + (n − r� − c� − 1)αd

� .

Since α� is uniformly distributed over [0, 1], substituting this intoEα�
[log(Eα|α�

[N�(π, x)])]
results in (7), completing the proof. ��

3.2 Estimating the integral

In order to apply Theorem 2, we need to understand the asymptotics of the bound it provides.
In this next lemma, we show how to estimate the integral from the theorem.

Lemma 1 Let 2 ≤ d ≤ n and Id = ∫ 1
0 log(1 + (n − 1)td)dt . Then

Id ≤ log

(
n − 1

ed

)
+ d

(n − 1)1/d
+ 3

d(n − 1)1/d
.

Proof Set t0 = (n − 1)−1/d . Note that (n − 1)td < 1 if and only if t < t0. We have

Id =
∫ 1

0
log(1 + (n − 1)td)dt

=
∫ t0

0
log(1 + (n − 1)td)dt +

∫ 1

t0
log((n − 1)td)dt +

∫ 1

t0
log

(
1 + 1

(n − 1)td

)
dt .

We estimate the three integrals in turn:

∫ t0

0
log(1 + (n − 1)td)dt ≤

∫ t0

0
(n − 1)tddt = n − 1

d + 1
td+1

∣∣∣
t0

0
= t0

d + 1
,

where for the inequality we use the fact that log(1 + x) ≤ x for all x > −1, and in the final
equality we use td0 = (n − 1)−1,
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∫ 1

t0
log((n − 1)td)dt =

∫ 1

t0
log(n − 1) + d log tdt

= (1 − t0) log(n − 1) + d (t log t − t)
∣∣∣
1

t0

= (1 − t0) log(n − 1) + (t0 − 1)d + t0 log(n − 1)

= log(n − 1) + (t0 − 1)d,

where the penultimate equality again follows from td0 = (n − 1)−1, and
∫ 1

t0
log

(
1 + 1

(n − 1)td

)
dt ≤

∫ 1

t0

1

(n − 1)td
dt = −1

(n − 1)(d − 1)
+ t0

d − 1
.

Hence, we have

Id ≤ t0
d + 1

+ log(n − 1) + (t0 − 1)d − 1

(n − 1)(d − 1)
+ t0

d − 1

≤ log

(
n − 1

ed

)
+ d

(n − 1)1/d
+ 3

d(n − 1)1/d
,

where we ignore the negative term and bound 1
d+1 + 1

d−1 by 3
d . ��

Corollary 1 now follows easily from Theorem 2 and Lemma 1.

Proof of Corollary 1 The lower bound comes from the average number of extensions of a k-
MOLS, computed in (3). For the upper bound, Theorem 2 asserts that the logarithm of the
number of extensions of a k-MOLS of order n is, in the notation of Lemma 1, at most n2 Ik+2.
By the lemma, this is bounded by

n2
(
log

(
n − 1

ek+2

)
+ k + 2

(n − 1)1/(k+2)
+ 3

(k + 2)(n − 1)1/(k+2)

)
≤ n2

(
log

(
n − 1

ek+2

)
+ k + 4

(n − 1)1/(k+2)

)
.

Since k is fixed as n tends to infinity, this is

n2
(
log

(
n − 1

ek+2

)
+ o(1)

)
= n2 log

(
(1 + o(1))

n − 1

ek+2

)
= n2 log

(
(1 + o(1))

n

ek+2

)
,

giving the desired upper bound. ��
Finally, we deduce our upper bound on the number of large sets of mutually orthogonal

Latin squares.

Proof of Corollary 2 Wecan build a k-MOLSby startingwith the empty 0-MOLS, and extend-
ing it by one Latin square at a time. Theorem 2 bounds the number of possible extensions at
each step, and so, in the notation of Lemma 1, we have

log L(k)(n) ≤ n2
k+1∑
d=2

Id . (8)

We shall prove each part of the corollary by estimating this sum appropriately.

(i) By Lemma 1, we have

Id ≤ log(n − 1) − d + d + 2

(n − 1)1/d
.
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Hence, summing over d , we obtain

k+1∑
d=2

Id ≤ k log(n − 1) −
((

k + 2

2

)
− 1

)
+

(
k + 4

2

)
(n − 1)−1/(k+2),

from which the bound follows. Note that when k = o(log n), the final summand is a
lower order term compared to k2, and we can be generous in our estimation.

(ii) When k = Ω(log n), that final term above becomes significant. While the previous
upper bound remains valid, we obtain a better result through more careful calculation.
Rearranging the bound in Lemma 1 gives

Id ≤ log(n − 1) − d
(
1 − (n − 1)−1/d

)
+ 3

d(n − 1)1/d

≤ log(n − 1) − d

(
1 − e− log(n−1)

d

)
+ 3

d
.

Therefore we have

k+1∑
d=2

Id ≤ k log(n − 1) −
k+1∑
d=2

d

(
1 − e− log(n−1)

d

)
+

k+1∑
d=2

3

d
.

The second sum, an error term, is at most 3 log(k + 1). For the first sum, by making
the substitution x = d

log(n−1) , we observe that this is related to the estimation of the

integral
∫
x

(
1 − e−1/x

)
dx by the Riemann sum with step size 1/ log(n − 1). More

precisely, we have

1

log(n − 1)

k+1∑
d=2

d

log(n − 1)

(
1 − e− log(n−1)

d

)
=

∫ k+1
log(n−1)

2
log(n−1)

x
(
1 − e−1/x) dx + o(1).

Making the necessary substitutions and letting n tend to infinity gives the claimed
bound.

(iii) When k = ω(log n), the above integral has an infinite domain, but we shall show that
it still converges. First, we estimate e−1/x to observe that

x
(
1 − e−1/x) = 1 − 1

2x
+ O(x−2),

where the asymptotics are as x tends to infinity. Hence, when β tends to infinity,
∫ β

0
x

(
1 − e−1/x) dx =

∫ β

0
1 − 1

2x
+ O(x−2)dx = β − 1

2 log(β) + O(1).

The result then follows by substituting this into the statement of part (ii) with β = k
log n ;

since the integrand x
(
1 − e−1/x

)
is bounded and monotone increasing for large x , the

Riemann sum remains a good approximation of the integral when β → ∞. ��

4 Explicit constructions

Corollary 1 establishes the existence of Latin squares with several orthogonal mates. Given
the numerous applications of orthogonal Latin squares, however, it is of great interest to have
explicit constructions of such squares. For instance, in the closely related problem of counting
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transversals in Latin squares, Taranenko [39] showed that a Latin square of order n can have

at most
(
(1 + o(1)) n

e2

)n
transversals. Glebov and Luria [17] later proved that Taranenko’s

bound is tight via a probabilistic construction. Recent results of Eberhard et al. [12] and
Eberhard [11] give a constructive proof of the theorem of Glebov and Luria, providing
explicit examples of Latin squares attaining this bound (in a very precise sense). They show

that the Cayley table of any abelian group G where
∑
g∈G

g = 0 has
(
2πn2√

e
+ o(1)

) (
n
e2

)n

transversals.
To see the relation between transversals and orthogonalmates, observe that the n translates

of any transversal in a Cayley table partition the Latin square. For each such partition into
transversals, we can construct n! ∼ √

2πn
( n
e

)n distinct orthogonal mates by assigning
distinct symbols in [n] to the n transversals. The results of Eberhard et al. thus imply that

Cayley tables of abelian groups have at least

(√
8π3n5

e + o(1)

) (
n2

e3

)n
orthogonal mates.

This lower bound is much smaller than the upper bound we would like to match, because this
simple argument only counts orthogonal mates of a very special type. Here we describe a
construction of MacNeish [33] that allows us to significantly improve this bound, even if we
still fall slightly short of the true maximum number of orthogonal mates given by Corollary 1.

The Kronecker product of two Latin squares L1 and L2 of order n1 and n2 respec-
tively is the Latin square L1 ⊗ L2 of order n1n2 given by (L1 ⊗ L2)((i1, j1), (i2, j2)) =
(L1(i1, i2), L2( j1, j2)). (Of course, the row and column indices and the symbols of L1 ⊗ L2

can be seen as elements of [n1n2] after fixing an arbitrary bijection from [n1] × [n2].) For a
Latin square L , we write L⊗k to denote the k-fold product L ⊗ · · · ⊗ L︸ ︷︷ ︸

k times

.

Proposition 1 Let L1 and L2 be Latin squares of order n1 and n2 that have q1 and q2
orthogonal mates respectively. Then the number of orthogonal mates of L1 ⊗ L2 is at least

q1q
n21
2

(n1n2)!
n1!(n2!)n1 .

Proof We will show how orthogonal mates of L1 and L2 can be combined in several ways
to produce orthogonal mates of the product L1 ⊗ L2. For this, it is again useful to view an
orthogonal mate as an ordered partition of L1 ⊗ L2 into disjoint transversals.

Further observe that L1 ⊗ L2 can be partitioned into n21 blocks of the form L1(i1, i2)⊗ L2

for i1, i2 ∈ [n1]. Each of these is isomorphic to L2, and thus admits q2 orthogonal mates.
There are q1 orthogonal mates of L1, and thus

q1
n1! unordered partitions of L1 into disjoint

transversals, say {T1, . . . , Tn1}. In the product L1 ⊗ L2, this partitions the blocks into n1
disjoint sets.

Let Tj be one of the transversals in this decomposition of L1. The corresponding blocks
Tj ⊗ L2 = {L1(i1, i2) ⊗ L2 : (i1, i2) ∈ Tj } then have all distinct symbols from [n1] in
the first coordinate, and hence cover each symbol in [n1] × [n2] precisely n2 times. To get
a transversal of L1 ⊗ L2, we can choose a transversal in each block L1(i1, i2) ⊗ L2 and
stitch them together. Furthermore, if we partition each block into transversals, stitching them
together gives a partition of Tj ⊗ L2 into transversals of L1 ⊗ L2.

There are qn12 ways to choose orthogonal mates for each of the n1 blocks in Tj ⊗ L2. Here
we keep the ordering, as that tells us which transversals in different blocks should be stitched
together. This gives us an ordered partition of Tj ⊗ L2 into n2 transversals of L1 ⊗ L2, and

so there are
q
n1
2
n2! unordered partitions of this set of blocks into transversals.

123



2200 S. Boyadzhiyska et al.

Making these choices for each Tj , we obtain a total of
q1
n1!

(
q
n1
2
n2!

)n1
partitions of L1 ⊗ L2

into n1n2 disjoint transversals, each of which can easily be shown to be distinct. To obtain an

orthogonal mate, we can order these transversals arbitrarily, and thus obtain q1q
n21
2

(n1n2)!
n1!(n2!)n1

mates, as claimed. ��
In particular, this implies that powers of a single Latin square havemany orthogonalmates.

Corollary 3 Let L be a Latin square of order m with q orthogonal mates. Then L⊗k is a Latin

square of order mk with at least q
m2k−1
m2−1 orthogonal mates.

Proof We proceed by induction. The statement is clearly true for k = 1. Suppose it holds
for some k ≥ 1. Then, by Proposition 1, with L1 = L⊗k , L2 = L , n1 = mk , n2 = m,

q1 = m2k−1
m2−1

, and q2 = q , we know the number of mates of L⊗(k+1) is at least

q
m2k−1
m2−1 qm

2k (mk+1)!
(mk)!(m!)mk ≥ q

m2(k+1)−1
m2−1 .

��
Ifwe take L to be theCayley table ofZ3, thenwehaveq = 6.The k-foldKronecker product

of the Cayley table gives the Cayley table of the product group Zk
3, which by Corollary 3 has

at least (61/8)3
2k−1 orthogonal mates. In the next corollary, we show that the constant in the

base of the exponent can be made arbitrarily large at the cost of having a slightly less explicit
construction.

Corollary 4 For any C > 0, there are infinitely many orders n for which we can efficiently
produce Latin squares with at least Cn2 orthogonal mates.

Proof Let m be such that m
2e3

> C . By Corollary 1, provided m is sufficiently large, there is

a Latin square L of order m with
(
(1 + o(1)) m

e3

)m2

> Cm2
orthogonal mates; we can find

such a square with a (finite) exhaustive search. By Corollary 3, we know that the Latin square

L⊗k of order n = mk has at least C
m2(m2k−1)

m2−1 ≥ Cn2 orthogonal mates. ��

5 Concluding remarks and open questions

In this paper, by bounding the number of extensions of a set of mutually orthogonal Latin
squares, we obtained upper bounds on the number of k-MOLS when k grows with n. The
obvious question is how tight these bounds are — can we find corresponding lower bounds?
The constructions of Donovan and Grannell [10], valid for infinitely many values of n when
k ≤ √

n, give lower bounds of the form log L(k)(n) = Ω
(
γ (k, n)n2 log n

)
, where γ (k, n) =

max
{

log k
k2 log n

, 1
k4

}
. This is considerably smaller than our upper bounds in Corollary 2, and it

would be of great interest to narrow the gap. One might hope to extend the lower bounds of
Keevash [26], which were tight for constant k, but, as he notes in his paper, it is unclear how
his methods could be used when k grows.

Aside from the enumeration of k-MOLS, there are several other related open problems,
and we elaborate on these possible directions of study below.
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Orthogonal mates We have bounded the maximum number of orthogonal mates a Latin
square can have, but it is natural to ask if it is typical for a Latin square to have any orthogonal
mates at all. Computational results in this direction are given in [6,13,34]. His study of squares
of small order led van Rees [41] to conjecture that, as n → ∞, the proportion of Latin
squares without orthogonal mates tends to one. On the other hand, having studied slightly
larger orders, Wanless and Webb [42] suggested that the opposite may be true.

In (4), we saw that the results of Luria [32] and Keevash [26] imply that the average

Latin square of order n has
(
(1 + o(1)) n

e3

)n2
orthogonal mates. By Theorem 2, the same

expression describes the maximum number of mates a square can have. Given the num-
ber of Latin squares (see (1)), it follows by double-counting orthogonal pairs that at least(
(1 + o(1)) n

e2

)n2
squares must have an orthogonal mate. Unfortunately, due to the lower

order difference compared to (1) being in the base of the exponent, this falls short of resolv-
ing the question of whether or not most Latin squares have orthogonal mates.

Some evidence that this may not be straightforward to resolve is provided in [7], where
Cavenagh and Wanless showed that, for almost all even n, there are at least n(1−o(1))n2 Latin
squares of order n without a transversal, let alone an orthogonal mate. However, Ferber and
Kwan [16] study the analogous question in Steiner triple systems, and show that almost all
Steiner triple systems are almost resolvable. In the context of Latin squares, they suggest that
their methods would show that almost all Latin squares have (1 − o(1))n disjoint transver-
sals. Still, some new ideas would be needed to find the n disjoint transversals that form an
orthogonal mate.

In Sect. 4 we showed, for any given C > 0, that we can, for infinitely many n, construct
Latin squares of order n with at least Cn2 orthogonal mates. Given the existence of Latin
squares with many more, namely n(1+o(1))n2 , orthogonal mates, it is natural to seek better
constructions.

Problem 1 Is there an explicit construction of a Latin square of order n with at least nΩ(n2)

orthogonal mates?

In our product construction in Sect. 4, we only considered orthogonal mates consisting of
very special kinds of transversals (those built within blocks, using transversals of the two
factor squares). It is likely that these product squares have amuch larger number of orthogonal
mates, perhaps even close to the maximum possible.

We have also been vague with regards to what we mean by an explicit construction. As is
customary in computer science, by explicit we mean there is an algorithm that constructs the
Latin square in question in time polynomial in n. One can go further, and call a construction
strongly explicit if each individual entry of the Latin square can be determined in polyloga-
rithmic time. One can verify that our construction in the previous section is indeed strongly
explicit. Yet one feels somewhat cheated, as in the first step of the construction we perform an
exhaustive search to find an initial Latin squarewithmany orthogonalmates (whose existence
is guaranteed by random methods, see Corollary 1). It would be desirable to find construc-
tions that are also “morally explicit” in the sense that they can be described mathematically,
and in particular avoid any initial brute-force search. In this direction, it would be natural to
investigate whether the Cayley tables of abelian groups G with

∑
g∈G

g = 0 give examples of

such Latin squares (cf. [11,12]).

Affine and projective planes As mentioned earlier, (n − 1)-MOLS of order n correspond
to affine, and hence projective, planes of order n. Our knowledge of lower bounds in this
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setting is even direr; it is conjectured that there are no such systems when n is not a prime
power, and believed that there is a unique (up to isomorphism) projective plane when n is a
prime. As a step towards proving these conjectures, one could seek to bound the number of
affine/projective planes from above, a problem raised by Hedayat and Federer [19].

In our definition of L(k)(n), we do not account for isomorphism. Thus, given a single
projective plane,we can permute the symbolswithin each square of the corresponding (n−1)-
MOLS to obtain (n!)n−1 distinct (n − 1)-MOLS. This gives a lower bound of L(n−1)(n) ≥
(n!)n−1 = e(1−o(1))n2 log n whenever n is a prime power. We remark that, for certain prime
powers n, Kantor [22] and Kantor and Williams [23] provide algebraic constructions of
superpolynomially many non-isomorphic projective planes of order n, but this contributes a
lower order term in the above bound.

For an upper bound, Corollary 2 yields L(n−1)(n) ≤ e

(
1
2+o(1)

)
n2 log3 n

. However, since a
projective plane corresponds to amaximumpossible set ofmutually orthogonal Latin squares,
it has a very restricted structure, and we can take advantage of this to obtain a better upper
bound. Given a projective plane 	n of order n, a subset H of its lines is called a defining
set if 	n is the unique projective plane containing H — that is, the lines in H determine the
remaining lines in 	n . Building on the work of Kahn [21], Boros et al. [4] showed that every
projective plane admits a small defining set.

Theorem 4 [4] Every projective plane of order n (for n sufficiently large) contains a defining
set of size at most 22n log n.

This immediately improves our upper bound.

Corollary 5 L(n−1)(n) ≤ e(22+o(1))n2 log2 n.

Proof By Theorem 4, each projective plane of order n contains a set H of 22n log n lines
that determine the remaining ones uniquely. Each line is a subset of size n + 1 of the

n2 + n + 1 points. Thus, there are
(n2+n+1

n+1

) = e(1+o(1))n log n possible lines and at most

(e(1+o(1))n log n)22n log n possible sets H and hence projective planes of order n.
Each (n − 1)-MOLS corresponds to an affine plane of order n (the n2 cells represent

the points, two parallel classes are formed by the rows and columns, and each of the n − 1
Latin squares labels the lines of one of the remaining parallel classes), and every affine
plane has a unique extension to a projective plane (for each parallel class, we extend the
lines to a common new point, and add a line at infinity consisting of the new points). In
the reverse direction, a projective plane corresponds to at most n2 + n + 1 different affine
planes, by choosing the line at infinity. Furthermore, each affine plane corresponds to at most
(n + 1)!(n!)n+1 = e(1+o(1))n2 log n distinct (n − 1)-MOLS, since we can permute the parallel
classes, and the lines within parallel classes. This contributes a lower order term, and so we
can also bound L(n−1)(n) ≤ e(22+o(1))n2 log2 n . ��

It would be of great interest to remove the extra logarithmic factor in the exponent of the
upper bound, and thus reduce it log-asymptotically to the lower bound.

Conjecture 1
L(n−1)(n) = eO

(
n2 log n

)
.

As we obtain this many (n − 1)-MOLS from a single projective plane, this would provide
qualitative evidence in favor of the non-existence conjectures concerning projective planes.
Note that a stronger result than Conjecture 1 (and a possible avenue of attack) would be
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to improve Theorem 4, which is not known to be tight. The best known lower bound for
Theorem 4 is only linear in n, and, if every projective plane were to indeed contain a defining
set of O(n) lines, that would imply L(n−1)(n) = eΘ(n2 log n).

Sudoku squares As mentioned in Sect. 2.1, Sudoku squares are a special class of gerechte
designs of order n, where n = m2, with the array partitioned into m × m subsquares in the
natural way. After Golomb [18] asked about the existence of a pair of orthogonal Sudoku
squares of order 9 (corresponding to the popular puzzle), systems of k mutually orthogonal
Sudoku squares (k-MOSS) have been studied by several authors. This research has primarily
sought to determine the largest k for which a k-MOSS of order n can exist; we refer the
reader to [1,24,25,29,30,35] for constructions and results in this direction.

One may ask the same counting questions as before for this restricted class of Latin
squares, and these are relatively less well-studied. The number of Sudoku squares of order

n is known to be
(
(1 + o(1)) n

e3

)n2
; the upper bound is shown independently by Luria [32]

(using entropy) and Berend [3] (using Brégman’s Theorem), while the matching lower bound
is due to Keevash [26].

To enumerate k-MOSS for fixed k, we extend an idea of Keevash, defining a 4-

uniform hypergraph H with vertices V (H) =
{
x1, x2, y1, y2, z

(1)
1 , z(1)2 , . . . , z(k)1 , z(k)2

}

and edges {x1, x2, y1, y2},
{
x1, x2, z

(i)
1 , z(i)2

}
,

{
y1, y2, z

(i)
1 , z(i)2

}
,

{
x1, y1, z

(i)
1 , z(i)2

}
and{

z(i)1 , z(i)2 , z( j)1 , z( j)2

}
for all 1 ≤ i < j ≤ k. Letting H(

√
n) be the (2k + 4)-partite 4-

uniform hypergraph obtained by blowing each vertex up into
√
n new vertices, it follows

that a k-MOSS is equivalent to a decomposition of H(
√
n) into copies of H . For fixed k, the

results of Luria and Keevash show there are

(
(1 + o(1)) nk

e(
k+3
2 )−3

)n2

such decompositions.

Our results allow us to bound the number of ways of extending a k-MOSS by an additional
Sudoku square. Since each cell shares its row (or column) with

√
n − 1 other cells from the

same subsquare, we have r� = c� = √
n − 1 for each � ∈ [n2]. Applying Theorem 3 shows

that our upper bounds on k-MOSS coincide with our upper bounds on (k + 1)-MOLS. In
particular, the bound in (a) is once again tight, as it matches the average number of extensions
of a k-MOSS.

Corollary 6 (a) For all fixed k, the maximum number of extensions of a k-MOSS of order n

to a (k + 1)-MOSS is
(
(1 + o(1)) n

ek+3

)n2
.

(b) For k = k(n) ≥ 0, the logarithm of the number of k-MOSS is at most

(i)
(
(k + 1) log n − (k+3

2

) + 3 + (k + 1)2n−1/(k+3) + o(1)
)
n2 if k = o(log n),

(ii) (c(β) + o(1)) kn2 log n if k = β log n, for fixed β > 0,
(iii)

( 1
2 + o(1)

)
(log k − log log n)n2 log2 n if k = ω(log n),

where c(β), as in Corollary 2, is defined to be 1 − β−1
∫ β

0 x(1 − e−1/x )dx.

Proof A k-MOSS corresponds to a NOA(n, k + 3) with r� = c� = √
n − 1. Substituting

these parameters into Theorem 3, the logarithm of the number of extensions of a k-MOSS is
at most
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n2
∫ 1

0
log

(
1 + 2(

√
n − 1)tk+2 + (n − 2

√
n + 1)tk+3

)
dt

= n2
∫ 1

0
log

(
1 + (n − 1)tk+3

)
dt + n2

∫ 1

0
log

(
1 + 2(

√
n − 1)(1 − t)tk+2

1 + (n − 1)tk+3

)
dt .

The first integral is simply Ik+3, as evaluated in Lemma 1.
To bound the second integral, observe that
∫ 1

0
log

(
1 + 2(

√
n − 1)(1 − t)tk+2

1 + (n − 1)tk+3

)
dt ≤

∫ 1

0

2(
√
n − 1)(1 − t)tk+2

1 + (n − 1)tk+3 dt

≤
∫ 1

0

(2
√
n − 1)tk+2

1 + (n − 1)tk+3 dt

= 2

(k + 3)
√
n − 1

log
(
1 + (n − 1)tk+3

) ∣∣∣
1

0

= 2 log n

(k + 3)
√
n − 1

.

Thus, even if we sum up over all k ∈ [n], the contribution from this second integral is a
lower order error term. Hence our upper bound on the logarithm of the number of extensions
of a k-MOSS is n2(Ik+3 + o(1)), and therefore we obtain the same enumeration as when
extending a (k + 1)-MOLS. ��

Aside from the general lower bound of Keevash [26], we are not aware of any lower
bounds on the number of k-MOSS. It would therefore be interesting to find lower bounds on
the number of k-MOSS when k grows with n.

Problem 2 How tight are the upper bounds in Corollary 6(b)? That is, for k = k(n) that
grows with n, can we show the existence of many distinct k-MOSS?

Acknowledgements Open Access funding provided by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bailey R.A., Cameron P.J., Connelly R.: Sudoku, gerechte designs, resolutions, affine space, spreads,
reguli, and Hamming codes. Am. Math. Mon. 115(5), 383–404 (2008).

2. Behrens W.U.: Feldversuchsanordnungen mit verbessertem Ausgleich der Bodenunterschiede. Z. Land-
wirtsc. Versuchs. Unters. 2, 176–193 (1956).

3. Berend D.: On the number of Sudoku squares. Discret. Math. 341(11), 3241–3248 (2018).
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