36 research outputs found

    Spreading of Non-Newtonian and Newtonian Fluids on a Solid Substrate under Pressure

    Full text link
    Strongly non-Newtonian fluids namely, aqueous gels of starch, are shown to exhibit visco-elastic behavior, when subjected to a load. We study arrowroot and potato starch gels. When a droplet of the fluid is sandwiched between two glass plates and compressed, the area of contact between the fluid and plates increases in an oscillatory manner. This is unlike Newtonian fluids, where the area increases monotonically in a similar situation. The periphery moreover, develops an instability, which looks similar to Saffman Taylor fingers. This is not normally seen under compression. The loading history is also found to affect the manner of spreading. We attempt to describe the non-Newtonian nature of the fluid through a visco-elastic model incorporating generalized calculus. This is shown to reproduce qualitatively the oscillatory variation in the surface strain.Comment: 11 page

    Advantage of Fractional Calculus Based Hybrid‐Theoretical‐Computational‐Experimental Approach for Alternating Current Voltammetry

    Get PDF
    The dynamic electrochemical behavior of electroactive species is believed to be represented better by the fractional calculus, because it can consider the history of mass-transfers of that species near the electrode surface. The elucidation of mathematical fundamentals of fractional calculus has been recently introduced for batteries, supercapacitors and a few voltammetry studies. The working equations for faradaic fundamental and second-harmonic (SHac) components of alternating current (ac) for ac voltammetry of an electrochemically reversible redox reaction on an electrode of macroscopic diameter have been derived here by using generalized formulae of the fractional calculus. A computation code is written in Python language with a matrix based algorithm developed based on latest, accurate, efficient and stable Grunwald-Letnikov-Improved fractional-order differentiation equation. That computational code is used to find the concealed faradaic fundamental, SHac components of the total current and other double-layer parameters of experimentally recorded voltammograms of ruthenium(III/II) redox reaction on gold-disc electrode by a common electrochemical workstation without having inbuilt Fourier transformation features. The amplitude of the computed faradaic current concealed in the experimental data gets enhanced through this hybrid theoretical-computational-experimental approach and thus it keeps scope of application and further improvement in electroanalysis

    Oblivious permutations on the plane

    Get PDF
    We consider a distributed system of n identical mobile robots operating in the two dimensional Euclidian plane. As in the previous studies, we consider the robots to be anonymous, oblivious, dis-oriented, and without any communication capabilities, operating based on the Look-Compute-Move model where the next location of a robot depends only on its view of the current configuration. Even in this seemingly weak model, most formation problems which require constructing specific configurations, can be solved quite easily when the robots are fully synchronized with each other. In this paper we introduce and study a new class of problems which, unlike the studied formation problems, cannot always be solved even in the fully synchronous model with atomic and rigid moves. This class of problems requires the robots to permute their locations in the plane. In particular, we are interested in implementing two special types of permutations - permutations without any fixed points and permutations of order n. The former (called Move-All) requires each robot to visit at least two of the initial locations, while the latter (called Visit-All) requires every robot to visit each of the initial locations in a periodic manner. We provide a characterization of the solvability of these problems, showing the main challenges in solving this class of problems for mobile robots. We also provide algorithms for the feasible cases, in particular distinguishing between one-step algorithms (where each configuration must be a permutation of the original configuration) an

    Common variants in CLDN2 and MORC4 genes confer disease susceptibility in patients with chronic pancreatitis

    Get PDF
    A recent Genome-wide Association Study (GWAS) identified association with variants in X-linked CLDN2 and MORC4 and PRSS1-PRSS2 loci with Chronic Pancreatitis (CP) in North American patients of European ancestry. We selected 9 variants from the reported GWAS and replicated the association with CP in Indian patients by genotyping 1807 unrelated Indians of Indo-European ethnicity, including 519 patients with CP and 1288 controls. The etiology of CP was idiopathic in 83.62% and alcoholic in 16.38% of 519 patients. Our study confirmed a significant association of 2 variants in CLDN2 gene (rs4409525—OR 1.71, P = 1.38 x 10-09; rs12008279—OR 1.56, P = 1.53 x 10-04) and 2 variants in MORC4 gene (rs12688220—OR 1.72, P = 9.20 x 10-09; rs6622126—OR 1.75, P = 4.04x10-05) in Indian patients with CP. We also found significant association at PRSS1-PRSS2 locus (OR 0.60; P = 9.92 x 10-06) and SAMD12-TNFRSF11B (OR 0.49, 95% CI [0.31–0.78], P = 0.0027). A variant in the gene MORC4 (rs12688220) showed significant interaction with alcohol (OR for homozygous and heterozygous risk allele -14.62 and 1.51 respectively, P = 0.0068) suggesting gene-environment interaction. A combined analysis of the genes CLDN2 and MORC4 based on an effective risk allele score revealed a higher percentage of individuals homozygous for the risk allele in CP cases with 5.09 fold enhanced risk in individuals with 7 or more effective risk alleles compared with individuals with 3 or less risk alleles (P = 1.88 x 10-14). Genetic variants in CLDN2 and MORC4 genes were associated with CP in Indian patients

    Genome-Wide Analyses of Recombination Prone Regions Predict Role of DNA Structural Motif in Recombination

    Get PDF
    HapMap findings reveal surprisingly asymmetric distribution of recombinogenic regions. Short recombinogenic regions (hotspots) are interspersed between large relatively non-recombinogenic regions. This raises the interesting possibility of DNA sequence and/or other cis- elements as determinants of recombination. We hypothesized the involvement of non-canonical sequences that can result in local non-B DNA structures and tested this using the G-quadruplex DNA as a model. G-quadruplex or G4 DNA is a unique form of four-stranded non-B DNA structure that engages certain G-rich sequences, presence of such motifs has been noted within telomeres. In support of this hypothesis, genome-wide computational analyses presented here reveal enrichment of potential G4 (PG4) DNA forming sequences within 25618 human hotspots relative to 9290 coldspots (p<0.0001). Furthermore, co-occurrence of PG4 DNA within several short sequence elements that are associated with recombinogenic regions was found to be significantly more than randomly expected. Interestingly, analyses of more than 50 DNA binding factors revealed that co-occurrence of PG4 DNA with target DNA binding sites of transcription factors c-Rel, NF-kappa B (p50 and p65) and Evi-1 was significantly enriched in recombination-prone regions. These observations support involvement of G4 DNA in recombination, predicting a functional model that is consistent with duplex-strand separation induced by formation of G4 motifs in supercoiled DNA and/or when assisted by other cellular factors

    SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion

    Get PDF
    Abstract: The B.1.617.2 (Delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha)1. In vitro, B.1.617.2 is sixfold less sensitive to serum neutralizing antibodies from recovered individuals, and eightfold less sensitive to vaccine-elicited antibodies, compared with wild-type Wuhan-1 bearing D614G. Serum neutralizing titres against B.1.617.2 were lower in ChAdOx1 vaccinees than in BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies to the receptor-binding domain and the amino-terminal domain. B.1.617.2 demonstrated higher replication efficiency than B.1.1.7 in both airway organoid and human airway epithelial systems, associated with B.1.617.2 spike being in a predominantly cleaved state compared with B.1.1.7 spike. The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralizing antibody, compared with that of wild-type spike. We also observed that B.1.617.2 had higher replication and spike-mediated entry than B.1.617.1, potentially explaining the B.1.617.2 dominance. In an analysis of more than 130 SARS-CoV-2-infected health care workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding. Compromised vaccine efficacy against the highly fit and immune-evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era

    Mediated population protocols: Leader election and applications

    No full text
    Mediated population protocols are an extension of popula-tion protocols in which communication links, as well as agents, have internal states. We study the leader election problem and some applica-tions in constant-state mediated population protocols. Depending on the power of the adversarial scheduler, our algorithms are either stabilizing or allow the agents to explicitly reach a terminal state. We show how to elect a unique leader if the graph of the possible interactions between agents is complete (as in the traditional popula-tion protocol model) or a tree. Moreover, we prove that a leader can be elected in a complete bipartite graph if and only if the two sides have coprime size. We then describe how to take advantage of the presence of a leader to solve the tasks of token circulation and construction of a shortest-path spanning tree of the network. Finally, we prove that with a leader we can transform any stabilizing protocol into a terminating one that solves the same task
    corecore