18 research outputs found

    Applications of artificial intelligence and machine learning in respiratory medicine

    No full text
    The past 5 years have seen an explosion of interest in the use of artificial intelligence (AI) and machine learning techniques in medicine. This has been driven by the development of deep neural networks (DNNs)-complex networks residing in silico but loosely modelled on the human brain-that can process complex input data such as a chest radiograph image and output a classification such as 'normal' or 'abnormal'. DNNs are 'trained' using large banks of images or other input data that have been assigned the correct labels. DNNs have shown the potential to equal or even surpass the accuracy of human experts in pattern recognition tasks such as interpreting medical images or biosignals. Within respiratory medicine, the main applications of AI and machine learning thus far have been the interpretation of thoracic imaging, lung pathology slides and physiological data such as pulmonary function tests. This article surveys progress in this area over the past 5 years, as well as highlighting the current limitations of AI and machine learning and the potential for future developments.status: publishe

    Estimating Airway Resistance from Forced Expiration in Spirometry

    No full text
    Spirometry is the gold standard to detect airflow limitation, but it does not measure airway resistance, which is one of the physiological factors behind airflow limitation. In this study, we describe the dynamics of forced expiration in spirometry using a deflating balloon and using this model. We propose a methodology to estimate ζ (zeta), a dimensionless and effort-independent parameter quantifying airway resistance. In N = 462 (65 ± 8 years), we showed that ζ is significantly (p < 0.0001) greater in COPD (2.59 ± 0.99) than healthy smokers (1.64 ± 0.18), it increased significantly (p < 0.0001) with the severity of airflow limitation and it correlated significantly (p < 0.0001) with airway resistance (r = 0.55) and specific conductance (r = −0.60) obtained from body-plethysmography. ζ also showed significant associations (p < 0.001) with diffusion capacity (r = −0.64), air-trapping (r = 0.68), and CT densitometry of emphysema (r = 0.40 against % below −950 HU and r = −0.34 against 15th percentile HU). Moreover, simulation studies demonstrated that an increase in ζ resulted in lower airflows from baseline. Therefore, we conclude that ζ quantifies airway resistance from forced expiration in spirometry—a method that is more abundantly available in primary care than traditional but expensive methods of measuring airway resistance such as body-plethysmography and forced oscillation technique

    Deep learning algorithm helps to standardise ATS/ERS spirometric acceptability and usability criteria.

    No full text
    RATIONALE: While ATS/ERS quality control criteria for spirometry include several quantitative limits, it also requires manual visual inspection. The current approach is time consuming and leads to high inter-technician variability. We propose a deep learning approach called convolutional neural network (CNN), to standardise spirometric manoeuvre acceptability and usability. METHODS AND METHODS: In 36 873 curves from the national health and nutritional examination survey (NHANES) USA 2011-12, technicians labelled 54% of curves as meeting ATS/ERS 2005 acceptability criteria with satisfactory start and end of test but identified 93% of curves with a usable FEV1. We processed raw data into images of maximal expiratory flow-volume curve (MEFVC), calculated ATS/ERS quantifiable criteria, and developed CNNs to determine manoeuvre acceptability and usability on 90% of the curves. The models were tested on the remaining 10% of curves. We calculated Shapley values to interpret the models. RESULTS: In the test set (N=3738), CNN showed an accuracy of 87% for acceptability and 92% for usability, with the latter demonstrating a high sensitivity (92%) and specificity (96%). They were significantly superior (p<0.0001) to ATS/ERS quantifiable rule-based models. Shapley interpretation revealed MEFVC<1 s (MEFVC pattern within first second of exhalation) and plateau in volume-time were most important in determining acceptability, while MEFVC<1 s entirely determined usability. CONCLUSION: The CNNs identified relevant attributes in spirometric curves to standardise ATS/ERS manoeuvre acceptability and usability recommendations, and further provides individual manoeuvre feedback. Our algorithm combines the visual experience of skilled technicians and ATS/ERS quantitative rules in automating the critical phase of spirometry quality control.status: Published onlin

    Artificial intelligence based software facilitates spirometry quality control in asthma and COPD clinical trials

    No full text
    Rationale Acquiring high-quality spirometry data in clinical trials is important, particularly when using forced expiratory volume in 1 s or forced vital capacity as primary end-points. In addition to quantitative criteria, the American Thoracic Society (ATS)/European Respiratory Society (ERS) standards include subjective evaluation which introduces inter-rater variability and potential mistakes. We explored the value of artificial intelligence (AI)-based software (ArtiQ.QC) to assess spirometry quality and compared it to traditional over-reading control. Methods A random sample of 2000 sessions (8258 curves) was selected from Chiesi COPD and asthma trials (n=1000 per disease). Acceptability using the 2005 ATS/ERS standards was determined by over-reader review and by ArtiQ.QC. Additionally, three respiratory physicians jointly reviewed a subset of curves (n=150). Results The majority of curves (n=7267, 88%) were of good quality. The AI agreed with over-readers in 91% of cases, with 97% sensitivity and 93% positive predictive value. Performance was significantly better in the asthma group. In the revised subset, n=50 curves were repeated to assess intra-rater reliability (κ=0.83, 0.86 and 0.80 for each of the three reviewers). All reviewers agreed on 63% of 100 unique tests (κ=0.5). When reviewers set the consensus (gold standard), individual agreement with it was 88%, 94% and 70%. The agreement between AI and “gold-standard” was 73%; over-reader agreement was 46%. Conclusion AI-based software can be used to measure spirometry data quality with comparable accuracy as experts. The assessment is a subjective exercise, with intra- and inter-rater variability even when the criteria are defined very precisely and objectively. By providing consistent results and immediate feedback to the sites, AI may benefit clinical trial conduct and variability reduction

    Spirometric indices of early airflow impairment in individuals at risk of developing COPD: Spirometry beyond FEV1/FVC

    No full text
    Spirometry is the current gold standard for diagnosing and monitoring the progression of Chronic Obstructive Pulmonary Disease (COPD). However, many current and former smokers who do not meet established spirometric criteria for the diagnosis of this disease have symptoms and clinical courses similar to those with diagnosed COPD. Large longitudinal observational studies following individuals at risk of developing COPD offer us additional insight into spirometric patterns of disease development and progression. Analysis of forced expiratory maneuver changes over time may allow us to better understand early changes predictive of progressive disease. This review discusses the theoretical ability of spirometry to capture fine pathophysiologic changes in early airway disease, highlights the shortcomings of current diagnostic criteria, and reviews existing evidence for spirometric measures which may be used to better detect early airflow impairment.status: publishe

    Principal component analysis of flow-volume curves in COPDGene to link spirometry with phenotypes of COPD

    No full text
    Abstract Background Parameters from maximal expiratory flow-volume curves (MEFVC) have been linked to CT-based parameters of COPD. However, the association between MEFVC shape and phenotypes like emphysema, small airways disease (SAD) and bronchial wall thickening (BWT) has not been investigated. Research question We analyzed if the shape of MEFVC can be linked to CT-determined emphysema, SAD and BWT in a large cohort of COPDGene participants. Study design and methods In the COPDGene cohort, we used principal component analysis (PCA) to extract patterns from MEFVC shape and performed multiple linear regression to assess the association of these patterns with CT parameters over the COPD spectrum, in mild and moderate-severe COPD. Results Over the entire spectrum, in mild and moderate-severe COPD, principal components of MEFVC were important predictors for the continuous CT parameters. Their contribution to the prediction of emphysema diminished when classical pulmonary function test parameters were added. For SAD, the components remained very strong predictors. The adjusted R2 was higher in moderate-severe COPD, while in mild COPD, the adjusted R2 for all CT outcomes was low; 0.28 for emphysema, 0.21 for SAD and 0.19 for BWT. Interpretation The shape of the maximal expiratory flow-volume curve as analyzed with PCA is not an appropriate screening tool for early disease phenotypes identified by CT scan. However, it contributes to assessing emphysema and SAD in moderate-severe COPD
    corecore