33,187 research outputs found

    Inhomogeneous Cooling of the Rough Granular Gas in Two Dimensions

    Full text link
    We study the inhomogeneous clustered regime of a freely cooling granular gas of rough particles in two dimensions using large-scale event driven simulations and scaling arguments. During collisions, rough particles dissipate energy in both the normal and tangential directions of collision. In the inhomogeneous regime, translational kinetic energy and the rotational energy decay with time tt as power-laws tθTt^{-\theta_T} and tθRt^{-\theta_R}. We numerically determine θT1\theta_T \approx 1 and θR1.6\theta_R \approx 1.6, independent of the coefficients of restitution. The inhomogeneous regime of the granular gas has been argued to be describable by the ballistic aggregation problem, where particles coalesce on contact. Using scaling arguments, we predict θT=1\theta_T=1 and θR=1\theta_R=1 for ballistic aggregation, θR\theta_R being different from that obtained for the rough granular gas. Simulations of ballistic aggregation with rotational degrees of freedom are consistent with these exponents.Comment: 6 pages, 5 figure

    CMB Lensing and the WMAP Cold Spot

    Full text link
    Cosmologists have suggested a number of intriguing hypotheses for the origin of the "WMAP cold spot", the coldest extended region seen in the CMB sky, including a very large void and a collapsing texture. Either hypothesis predicts a distinctive CMB lensing signal. We show that the upcoming generation of high resolution CMB experiments such as ACT and SPT should be able to detect the signatures of either textures or large voids. If either signal is detected, it would have profound implications for cosmology.Comment: 5 pages, 2 figures, a bug in Fig.2 fixe
    corecore