20 research outputs found

    Pharmacology of Cell Adhesion Molecules of the Nervous System

    Get PDF
    Cell adhesion molecules (CAMs) play a pivotal role in the development and maintenance of the nervous system under normal conditions. They also are involved in numerous pathological processes such as inflammation, degenerative disorders, and cancer, making them attractive targets for drug development. The majority of CAMs are signal transducing receptors. CAM-induced intracellular signalling is triggered via homophilic (CAM-CAM) and heterophilic (CAM - other counter-receptors) interactions, which both can be targeted pharmacologically. We here describe the progress in the CAM pharmacology focusing on cadherins and CAMs of the immunoglobulin (Ig) superfamily, such as NCAM and L1. Structural basis of CAM-mediated cell adhesion and CAM-induced signalling are outlined. Different pharmacological approaches to study functions of CAMs are presented including the use of specific antibodies, recombinant proteins, and synthetic peptides. We also discuss how unravelling of the 3D structure of CAMs provides novel pharmacological tools for dissection of CAM-induced signalling pathways and offers therapeutic opportunities for a range of neurological disorders

    Reply to Comment on Conopeptide-Functionalized Nanoparticles Selectively Antagonize Extrasynaptic N-Methyl-d-aspartate Receptors and Protect Hippocampal Neurons from Excitotoxicity In Vitro

    Get PDF
    In this manuscript, we provide precise answers to the concerns expressed by Molokanova et al. in their comment. In our reply, we highlight that there is indeed substantial agreement between our study and the one reported in Nano Letters by the Molokanova’s group.1 We believe this is a very important aspect because it proves the validity of the chosen approach, i.e. PEGylated AuNPs carrying NMDAR antagonists and with an overall dimension large enough to prevent their diffusion into the synapse can exclusively antagonize extrasynaptic NMDAR-mediated currents and are thereby neuroprotective

    Nanostars Carrying Multifunctional Neurotrophic Dendrimers Protect Neurons in Preclinical In Vitro Models of Neurodegenerative Disorders

    Get PDF
    A challenge in neurology is the lack of efficient brain-penetrable neuroprotectants targeting multiple disease mechanisms. Plasmonic gold nanostars are promising candidates to deliver standard-of-care drugs inside the brain but have not been trialed as carriers for neuroprotectants. Here, we conjugated custom-made peptide dendrimers (termed H3/H6), encompassing motifs of the neurotrophic S100A4-protein, onto star-shaped and spherical gold nanostructures (H3/H6-AuNS/AuNP) and evaluated their potential as neuroprotectants and interaction with neurons. The H3/H6 nanostructures crossed a model blood-brain barrier, bound to plasma membranes, and induced neuritogenesis with the AuNS, showing higher potency/efficacy than the AuNP. The H3-AuNS/NP protected neurons against oxidative stress, the H3-AuNS being more potent, and against Parkinson's or Alzheimer's disease (PD/AD)-related cytotoxicity. Unconjugated S100A4 motifs also decreased amyloid beta-induced neurodegeneration, introducing S100A4 as a player in AD. Using custom-made dendrimers coupled to star-shaped nanoparticles is a promising route to activate multiple neuroprotective pathways and increase drug potency to treat neurodegenerative disorders

    Neural Cell Adhesion Molecule Induces Intracellular Signaling via Multiple Mechanisms of Ca(2+) Homeostasis

    No full text
    The neural cell adhesion molecule (NCAM) plays a pivotal role in the development of the nervous system, promoting neuronal differentiation via homophilic (NCAM–NCAM) as well as heterophilic (NCAM-fibroblast growth factor receptor [FGFR]) interactions. NCAM-induced intracellular signaling has been shown to affect and be dependent on the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)). However, the molecular basis of this remains unclear. In this study, we determined [Ca(2+)](i) regulating mechanisms involved in intracellular signaling induced by NCAM. To mimic the effect of homophilic NCAM interaction on [Ca(2+)](i) in vitro, we used a peptide derived from a homophilic binding site of NCAM, termed P2, which triggers signaling cascades similar to those activated by NCAM–NCAM interaction. We found that P2 increased [Ca(2+)](i) in primary hippocampal neurons. This effect depended on two signaling pathways. The first pathway was associated with activation of FGFR, phospholipase Cγ, and production of diacylglycerol, and the second pathway involved Src-family kinases. Moreover, NCAM-mediated Ca(2+) entry required activation of nonselective cation and T-type voltage-gated Ca(2+) channels. These channels, together with the Src-family kinases, were also involved in neuritogenesis induced by physiological, homophilic NCAM interactions. Thus, unanticipated mechanisms of Ca(2+) homeostasis are shown to be activated by NCAM and to contribute to neuronal differentiation

    Molecular Mechanisms of Ca(2+) Signaling in Neurons Induced by the S100A4 Protein

    No full text
    The S100A4 protein belongs to the S100 family of vertebrate-specific proteins possessing both intra- and extracellular functions. In the nervous system, high levels of S100A4 expression are observed at sites of neurogenesis and lesions, suggesting a role of the protein in neuronal plasticity. Extracellular oligomeric S100A4 is a potent promoter of neurite outgrowth and survival from cultured primary neurons; however, the molecular mechanism of this effect has not been established. Here we demonstrate that oligomeric S100A4 increases the intracellular calcium concentration in primary neurons. We present evidence that both S100A4-induced Ca(2+) signaling and neurite extension require activation of a cascade including a heterotrimeric G protein(s), phosphoinositide-specific phospholipase C, and diacylglycerol-lipase, resulting in Ca(2+) entry via nonselective cation channels and via T- and L-type voltage-gated Ca(2+) channels. We demonstrate that S100A4-induced neurite outgrowth is not mediated by the receptor for advanced glycation end products, a known target for other extracellular S100 proteins. However, S100A4-induced signaling depends on interactions with heparan sulfate proteoglycans at the cell surface. Thus, glycosaminoglycans may act as coreceptors of S100 proteins in neurons. This may provide a mechanism by which S100 proteins could locally regulate neuronal plasticity in connection with brain lesions and neurological disorders

    Label-free nanoscale mapping of intracellular organelle chemistry

    Get PDF
    Abstract The ability to image cell chemistry at the nanoscale is key for understanding cell biology, but many optical microscopies are restricted by the ~(200–250)nm diffraction limit. Electron microscopy and super-resolution fluorescence techniques beat this limit, but rely on staining and specialised labelling to generate image contrast. It is challenging, therefore, to obtain information about the functional chemistry of intracellular components. Here we demonstrate a technique for intracellular label-free chemical mapping with nanoscale (~30 nm) resolution. We use a probe-based optical microscope illuminated with a mid-infrared laser whose wavelengths excite vibrational modes of functional groups occurring within biological molecules. As a demonstration, we chemically map intracellular structures in human multiple myeloma cells and compare the morphologies with electron micrographs of the same cell line. We also demonstrate label-free mapping at wavelengths chosen to target the chemical signatures of proteins and nucleic acids, in a way that can be used to identify biochemical markers in the study of disease and pharmacology
    corecore