3,985 research outputs found

    Synthesis and characterisation of Fe<sub>6</sub> and Fe<sub>12</sub> clusters using bicine

    Get PDF
    Reaction of bicine {BicH3, N,N-bis(2-hydroxyethyl)glycine} with an Fe(III) oxo-centered pivalate triangle in MeCN in the presence of Et&lt;sub&gt;2&lt;/sub&gt;NH yields [Et&lt;sub&gt;2&lt;/sub&gt;NH&lt;sub&gt;2&lt;/sub&gt;]&lt;sub&gt;2&lt;/sub&gt;[Fe&lt;sub&gt;6&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt;(OH)&lt;sub&gt;2&lt;/sub&gt;(Bic)&lt;sub&gt;2&lt;/sub&gt;(O&lt;sub&gt;2&lt;/sub&gt;CCMe&lt;sub&gt;3&lt;/sub&gt;)&lt;sub&gt;8&lt;/sub&gt;], which possesses an S = 5 ground state. Changing the base to NaOMe produces [Fe&lt;sub&gt;12&lt;/sub&gt;O&lt;sub&gt;4&lt;/sub&gt;(Bic)&lt;sub&gt;4&lt;/sub&gt;(HBic)&lt;sub&gt;4&lt;/sub&gt;(O&lt;sub&gt;2&lt;/sub&gt;CCMe&lt;sub&gt;3&lt;/sub&gt;)&lt;sub&gt;8&lt;/sub&gt;], which contains two Fe6 units bridged by the carboxylate arms from the bicine ligands. The complex displays strong antiferromagnetic coupling leading to an S = 0 ground state

    Polarization observables of the gamma d --> PiNN reaction in the Delta(1232)-resonance region

    Full text link
    Polarization observables of the three charge states of the pion for the γdπNN\gamma d\to\pi NN reaction with polarized photon beam and/or oriented deuteron target are evaluated over the whole Δ\Delta(1232)-resonance region adopting a nonrelativistic model based on time-ordered perturbation theory. Results for the π\pi-meson spectra, linear photon asymmetry, vector and tensor target asymmetries are presented. Particular attention is given, for the first time, to double polarization asymmetries for which we present results for T20T_{20}^{\ell} and T2±2T_{2\pm 2}^{\ell}. We found that all other double polarization asymmetries of photon and deuteron target are vanished.Comment: 17 Pages, 8 Figures, accepted for publication in Int. J. Mod. Phys.

    Engineering Judgment of Children Bone Fracture

    Get PDF
    Supracondylar humerus fracture (SCHF) is one of the commonest elbow fractures in children. It is common injury for children with age from four to fourteen. In current study, the finite element technique is used to evaluate two techniques, namely, parallel and crossed K-wire fixation for treatment of SCHF, using K-wire fixation

    Interaction of Retinol with HSA using Spectroscopic Techniques

    Get PDF
    The interaction between retinol and HSA has been investigated using UV-absorption spectrophotometry, fluorescence spectroscopy and Fourier Transform Infrared (FT-IR) spectroscopy.UV-absorption spectrophotometry showed an increase in the absorption intensity with increasing the molecular ratios of retinol to HSA, it is found that the value of the binding constant is estimated to be1.7176×102 M-1. FTIR spectroscopy is used in the mid infrared region with Fourier self deconvolution, second derivative, difference spectra, peak picking and curve fitting were used to determine the effect of Retinol on the protein secondary structure in the amides I, II and Ill regions. Analysis of FTIR absorbance spectra is found that the intensity of the absorption bands increased with increasing the molecular ratios of retinol, however from the deconvoluted and curve fitted spectra found that the absorbance intensity for α-helix decreases relative to β-sheets, this decrease in intensity is related to the formation of H- bonding in the complex molecules

    Concurrent Multi-Target Laser Ablation for Making Nano-Composite Films

    Get PDF
    New method of using laser ablation for film deposition that can be called as concurrent multi-beam multi-target matrix-assisted pulsed laser evaporation and pulsed laser deposition (MBMT-MAPLE/PLD) is described. Practical MBMT-MAPLE/PLD system built at Dillard University has three separate laser beams, three targets and the remotely controlled plume overlapping mechanism that provides even mixing of the target materials during their deposition on the substrate. The system accommodates MAPLE targets in the form of polymer solutions frozen with flowing liquid nitrogen. The feasibility of the method was demonstrated when it was used for making polymer nano-composite films with two inorganic additives: upconversion fluorescent phosphor NaYF4:Yb3+, Er3+ and aluminum-doped ZnO (AZO). Three laser beams, an infrared 1064-nm beam for the MAPLE and two 532-nm beams for the PLD targets, were concurrently used in the process. The fabricated nano-composite films were characterized using X-ray diffraction, scanning electron microscopy (SEM), optical fluorescent spectroscopy, and the measurement of the quantum efficiency (QE) of the upconversion fluorescence. The size of the inorganic nanoparticles varied in the range 10–200 nm. The AZO additive increased QE by 1.6 times. The conclusion was made on the feasibility of MBMT-MAPLE/PLD method for making multi-component nano-composite films for various applications

    Comparative studies on the interactions between human serum albumin, bovine serum albumin and cholesterol: ftir and fluorescence spectroscopy

    Get PDF
    The interaction of the human serum albumin (HSA), bovine serum albumin (BSA) with cholesterol has been investigated. The basic binding interaction was studied by FTIR and fluorescence spectroscopy. From spectral analysis cholesterol showed a strong ability to quench the intrinsic fluorescence of HSA and BSA through a static quenching mechanism. The binding constant (k) between HSA and cholesterol is estimated to be K=2.14 × 103 M-1 at 293 K while between BSA and cholesterol is estimated to be K=.1.12 × 103 M-1 at the same temperature. FTIR spectroscopy with Fourier self-deconvolution technique was used to determine the protein secondary structure and cholesterol binding mechanisms. The observed spectral changes indicate a higher percentage of H-bonding between cholesterol and -helix compared to the percentage of H-bonding to cholesterol and -sheets.This work is supported by the German Research Foundation DFG grant No. DR228/24-

    Electrochemically Generated Luminescence of Luminol and Luciferin in Ionic Liquids

    Get PDF
    Electrochemiluminescence (ECL) is the generation of light triggered by an electrochemical reaction. ECL has been extensively studied in solvent-based electrolytes, but there is a lack of data on using electrode reactions to populate an excited-state light emitter in room temperature ionic liquids (RTILs). This work explores the current response, light intensity (photon counting), and spectral signatures of the cathodic ECL of luminol and firefly's luciferin in imidazolium-based RTILs. We have demonstrated that the cathodic (superoxide-triggered) ECL of both luminol and adenylate-ester of firefly's luciferin is viable in RTILs, explored the effect of water contaminations, and importantly, shown that the ECL signal persists for up to about 700 s after the removal of the external cathodic pulse, which is probably due to the stabilization of superoxide by double-layer cation-rich structures. Long-lived RTIL double-layer structures and their endogenous fields are detected as stable and discrete open-circuit potential plateaus

    Novel microwell-based spectrophotometric assay for determination of atorvastatin calcium in its pharmaceutical formulations

    Get PDF
    The formation of a colored charge-transfer (CT) complex between atorvastatin calcium (ATR-Ca) as a n-electron donor and 2, 3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as a π-electron acceptor was investigated, for the first time. The spectral characteristics of the CT complex have been described, and the reaction mechanism has been proved by computational molecular modeling. The reaction was employed in the development of a novel microwell-based spectrophotometric assay for determination of ATR-Ca in its pharmaceutical formulations. The proposed assay was carried out in 96-microwell plates. The absorbance of the colored-CT complex was measured at 460 nm by microwell-plate absorbance reader. The optimum conditions of the reaction and the analytical procedures of the assay were established. Under the optimum conditions, linear relationship with good correlation coefficient (0.9995) was found between the absorbance and the concentration of ATR-Ca in the range of 10-150 μg/well. The limits of detection and quantitation were 5.3 and 15.8 μg/well, respectively. No interference was observed from the additives that are present in the pharmaceutical formulation or from the drugs that are co-formulated with ATR-Ca in its combined formulations. The assay was successfully applied to the analysis of ATR-Ca in its pharmaceutical dosage forms with good accuracy and precision. The assay described herein has great practical value in the routine analysis of ATR-Ca in quality control laboratories, as it has high throughput property, consumes minimum volume of organic solvent thus it offers the reduction in the exposures of the analysts to the toxic effects of organic solvents, and reduction in the analysis cost by 50-fold. Although the proposed assay was validated for ATR-Ca, however, the same methodology could be used for any electron-donating analyte for which a CT reaction can be performed

    Multi-Beam Multi-Target Pulsed Laser Deposition of AZO Films with Polymer Nanoparticles for Thermoelectric Energy Harvesters

    Get PDF
    In comparison with metallic thermoelectric films, oxide films with artificial nanodefects have been seldom studied. And there has been no report on the incorporation of island-shaped organic nanoparticles. We describe a new approach to introduce nanometer-sized phonon scatterers in aluminum-doped ZnO (AZO) thermoelectric thin films–concurrent multi-beam multi-target-pulsed laser deposition and the matrix-assisted pulsed laser evaporation (MBMT-PLD/MAPLE). The approach was used to make nanocomposite thin films of AZO matrix with evenly dispersed poly(methyl methacrylate) (PMMA) nanoparticles. The introduction of the nanoparticles enhanced phonon scattering with consequent decrease of thermal conductivity by 20%. The electrical conductivity did not decrease after the addition of the second phase, as it would be predicted by Wiedemann-Franz law, but improved by 350% over pure AZO film. The thermoelectric figure of merit of the nanocomposite film became twice that of the pure AZO film. Taking advantage of room-temperature deposition, optimized AZO nanocomposite films are expected to be used in real applications, such as thin film modules deposited on flexible polymeric substrates for ubiquitous harvesting of the waste heat
    corecore