14 research outputs found
Emerging strategies of targeting lipoprotein lipase for metabolic and cardiovascular diseases
Although statins and other pharmacological approaches have improved the management of lipid abnormalities, there exists a need for newer treatment modalities especially for the management of hypertriglyceridemia. Lipoprotein lipase (LPL), by promoting hydrolytic cleavage of the triglyceride core of lipoproteins, is a crucial node in the management of plasma lipid levels. Although LPL expression and activity modulation is observed as a pleiotropic action of some the commonly used lipid lowering drugs, the deliberate development of drugs targeting LPL has not occurred yet. In this review, we present the biology of LPL, highlight the LPL modulation property of currently used drugs and review the novel emerging approaches to target LPL
Structure-activity and in vivo evaluation of a novel lipoprotein lipase (LPL) activator
Elevated triglycerides (TG) contribute towards increased risk for cardiovascular disease. Lipoprotein lipase (LPL) is an enzyme that is responsible for the metabolism of core triglycerides of very-low density lipoproteins (VLDL) and chylomicrons in the vasculature. In this study, we explored the structure-activity relationships of our lead compound (C10d) that we have previously identified as an LPL agonist. We found that the cyclopropyl moiety of C10d is not absolutely necessary for LPL activity. Several substitutions were found to result in loss of LPL activity. The compound C10d was also tested in vivo for its lipid lowering activity. Mice were fed a high-fat diet (HFD) for four months, and treated for one week at 10 mg/kg. At this dose, C10d exhibited in vivo biological activity as indicated by lower TG and cholesterol levels as well as reduced body fat content as determined by ECHO-MRI. Furthermore, C10d also reduced the HFD induced fat accumulation in the liver. Our study has provided insights into the structural and functional characteristics of this novel LPL activator
Anthocyanin-rich black currant extract suppresses the growth of human hepatocellular carcinoma cells
Pomegranate Bioactive Constituents Suppress Cell Proliferation and Induce Apoptosis in an Experimental Model of Hepatocellular Carcinoma: Role of Wnt/β-Catenin Signaling Pathway
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide, and chemoprevention represents a viable approach in lowering the mortality of this disease. Pomegranate fruit, an abundant source of anti-inflammatory phytochemicals, is gaining tremendous attention for its wide-spectrum health benefits. We previously reported that a characterized pomegranate emulsion (PE) prevents diethylnitrosamine (DENA)-induced rat hepatocarcinogenesis though inhibition of nuclear factor-kappaB (NF-κB). Since NF-κB concurrently induces Wnt/β-catenin signaling implicated in cell proliferation, cell survival, and apoptosis evasion, we examined antiproliferative, apoptosis-inducing and Wnt/β-catenin signaling-modulatory mechanisms of PE during DENA rat hepatocarcinogenesis. PE (1 or 10 g/kg) was administered 4 weeks before and 18 weeks following DENA exposure. There was a significant increase in hepatic proliferation (proliferating cell nuclear antigen) and alteration in cell cycle progression (cyclin D1) due to DENA treatment, and PE dose dependently reversed these effects. PE substantially induced apoptosis by upregulating proapoptotic protein Bax and downregulating antiapoptotic protein Bcl-2. PE dose dependently reduced hepatic β-catenin and augmented glycogen synthase kinase-3β expression. Our study provides evidence that pomegranate phytochemicals exert chemoprevention of hepatic cancer through antiproliferative and proapoptotic mechanisms by modulating Wnt/β-catenin signaling. PE, thus, targets two interconnected molecular circuits (canonical NF-κB and Wnt/β-catenin pathways) to exert chemoprevention of HCC
MitoNEET (CISD1) Knockout Mice Show Signs of Striatal Mitochondrial Dysfunction and a Parkinson\u27s Disease Phenotype
Mitochondrial dysfunction is thought to play a significant role in neurodegeneration observed in Parkinson’s disease (PD), yet the mechanisms underlying this pathology remain unclear. Here, we demonstrate that loss of mitoNEET (CISD1), an iron–sulfur containing protein that regulates mitochondrial bioenergetics, results in mitochondrial dysfunction and loss of striatal dopamine and tyrosine hydroxylase. Mitochondria isolated from mice lacking mitoNEET were dysfunctional as revealed by elevated reactive oxygen species (ROS) and reduced capacity to produce ATP. Gait analysis revealed a shortened stride length and decreased rotarod performance in knockout mice, consistent with the loss of striatal dopamine. Together, these data suggest that mitoNEET KO mice exhibit many of the characteristics of early neurodegeneration in PD and may provide a novel drug discovery platform to evaluate compounds for enhancing mitochondrial function in neurodegenerative disorders