49 research outputs found

    Components of SurA Required for Outer Membrane Biogenesis in Uropathogenic Escherichia coli

    Get PDF
    Background: SurA is a periplasmic peptidyl-prolyl isomerase (PPIase) and chaperone of Escherichia coli and other Gramnegative bacteria. In contrast to other PPIases, SurA appears to have a distinct role in chaperoning newly synthesized porins destined for insertion into the outer membrane. Previous studies have indicated that the chaperone activity of SurA rests in its ‘‘core module’ ’ (the N- plus C-terminal domains), based on in vivo envelope phenotypes and in vitro binding and protection of non-native substrates. Methodology/Principal Findings: In this study, we determined the components of SurA required for chaperone activity using in vivo phenotypes relevant to disease causation by uropathogenic E. coli (UPEC), namely membrane resistance to permeation by antimicrobials and maturation of the type 1 pilus usher FimD. FimD is a SurA-dependent, integral outer membrane protein through which heteropolymeric type 1 pili, which confer bladder epithelial binding and invasion capacity upon uropathogenic E. coli, are assembled and extruded. Consistent with prior results, the in vivo chaperone activity of SurA in UPEC rested primarily in the core module. However, the PPIase domains I and II were not expendable for wild-type resistance to novobiocin in broth culture. Steady-state levels of FimD were substantially restored in the UPEC surA mutant complemented with the SurA N- plus C-terminal domains. The addition of PPIase domain I augmented FimD maturation into the outer membrane, consistent with a model in which domain I enhances stability of and/or substrat

    Global Analysis of Extracytoplasmic Stress Signaling in Escherichia coli

    Get PDF
    The Bae, Cpx, Psp, Rcs, and σE pathways constitute the Escherichia coli signaling systems that detect and respond to alterations of the bacterial envelope. Contributions of these systems to stress response have previously been examined individually; however, the possible interconnections between these pathways are unknown. Here we investigate the dynamics between the five stress response pathways by determining the specificities of each system with respect to signal-inducing conditions, and monitoring global transcriptional changes in response to transient overexpression of each of the effectors. Our studies show that different extracytoplasmic stress conditions elicit a combined response of these pathways. Involvement of the five pathways in the various tested stress conditions is explained by our unexpected finding that transcriptional responses induced by the individual systems show little overlap. The extracytoplasmic stress signaling pathways in E. coli thus regulate mainly complementary functions whose discrete contributions are integrated to mount the full adaptive response

    Characterisation of SEQ0694 (PrsA/PrtM) of Streptococcus equi as a functional peptidyl-prolyl isomerase affecting multiple secreted protein substrates

    Get PDF
    YesPeptidyl-prolyl isomerase (PPIase) lipoproteins have been shown to influence the virulence of a number of Gram-positive bacterial human and animal pathogens, most likely through facilitating the folding of cell envelope and secreted virulence factors. Here, we used a proteomic approach to demonstrate that the Streptococcus equi PPIase SEQ0694 alters the production of multiple secreted proteins, including at least two putative virulence factors (FNE and IdeE2). We demonstrate also that, despite some unusual sequence features, recombinant SEQ0694 and its central parvulin domain are functional PPIases. These data add to our knowledge of the mechanisms by which lipoprotein PPIases contribute to the virulence of streptococcal pathogens

    A new heat-shock gene, ppiD, encodes a peptidyl-prolyl isomerase required for folding of outer membrane proteins in Escherichia coli.

    No full text
    We have identified a new folding catalyst, PpiD, in the periplasm of Escherichia coli. The gene encoding PpiD was isolated as a multicopy suppressor of surA, a mutation which severely impairs the folding of outer membrane proteins (OMPs). The ppiD gene was also identified based on its ability to be transcribed by the two-component system CpxR-CpxA. PpiD was purified to homogeneity and shown to have peptidyl-prolyl isomerase (PPIase) activity in vitro. The protein is anchored to the inner membrane via a single transmembrane segment, and its catalytic domain faces the periplasm. In addition, we have identified by site-directed mutagenesis some of the residues essential for its PPIase activity. A null mutation in ppiD leads to an overall reduction in the level and folding of OMPs and to the induction of the periplasmic stress response. The combination of ppiD and surA null mutations is lethal. This is the first time two periplasmic folding catalysts have been shown to be essential. Another unique aspect of PpiD is that its gene is regulated by both the Cpx two-component system and the sigma32 heat shock factor, known to regulate the expression of cytoplasmic chaperones
    corecore