36 research outputs found

    CSF metabolites associate with CSF tau and improve prediction of Alzheimer's disease status

    Get PDF
    Introduction: Cerebrospinal fluid (CSF) total tau (t-tau) and phosphorylated tau (p-tau) are biomarkers of Alzheimer's disease (AD), yet much is unknown about AD-associated changes in tau metabolism and tau tangle etiology. Methods: We assessed the variation of t-tau and p-tau explained by 38 previously identified CSF metabolites using linear regression models in middle-age controls from the Wisconsin Alzheimer's Disease Research Center, and predicted AD/mild cognitive impairment (MCI) versus an independent set of older controls using metabolites selected by the least absolute shrinkage and selection operator (LASSO). Results: The 38 CSF metabolites explained 70.3% and 75.7% of the variance in t-tau and p-tau, respectively. Of these, seven LASSO-selected metabolites improved the prediction ability of AD/MCI versus older controls (area under the curve score increased from 0.92 to 0.97 and 0.78 to 0.93) compared to the base model. Discussion: These tau-correlated CSF metabolites increase AD/MCI prediction accuracy and may provide insight into tau tangle etiology

    Pathway-Specific Polygenic Risk Scores as Predictors of Amyloid-beta Deposition and Cognitive Function in a Sample at Increased Risk for Alzheimer's Disease

    Get PDF
    Polygenic risk scores (PRSs) have been used to combine the effects of variants with small effects identified by genome-wide association studies. We explore the potential for using pathway-specific PRSs as predictors of early changes in Alzheimer’s disease (AD)-related biomarkers and cognitive function. Participants were from the Wisconsin Registry for Alzheimer’s Prevention, a longitudinal study of adults who were cognitively asymptomatic at enrollment and enriched for a parental history of AD. Using genes associated with AD in the International Genomics of Alzheimer’s Project’s meta-analysis, we identified clusters of genes that grouped into pathways involved in amyloid-β (Aβ) deposition and neurodegeneration: Aβ clearance, cholesterol metabolism, and immune response. Weighted pathway-specific and overall PRSs were developed and compared to APOE alone. Mixed models were used to assess whether each PRS was associated with cognition in 1,200 individuals, cerebral Aβ deposition measured using amyloid ligand (Pittsburgh compound B) positron emission imaging in 168 individuals, and cerebrospinal fluid Aβ deposition, neurodegeneration, and tau pathology in 111 individuals, with replication performed in an independent sample. We found that PRSs including APOE appeared to be driven by the inclusion of APOE, suggesting that the pathway-specific PRSs used here were not more predictive than an overall PRS or APOE alone. However, pathway-specific PRSs could prove to be useful as more knowledge is gained on the genetic variants involved in specific biological pathways of AD

    Identification of Genes with Rare Loss of Function Variants Associated with Aggressive Prostate Cancer and Survival.

    Get PDF
    BACKGROUND: Prostate cancer (PrCa) is a substantial cause of mortality among men globally. Rare germline mutations in BRCA2 have been validated robustly as increasing risk of aggressive forms with a poorer prognosis; however, evidence remains less definitive for other genes. OBJECTIVE: To detect genes associated with PrCa aggressiveness, through a pooled analysis of rare variant sequencing data from six previously reported studies in the UK Genetic Prostate Cancer Study (UKGPCS). DESIGN, SETTING, AND PARTICIPANTS: We accumulated a cohort of 6805 PrCa cases, in which a set of ten candidate genes had been sequenced in all samples. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We examined the association between rare putative loss of function (pLOF) variants in each gene and aggressive classification (defined as any of death from PrCa, metastatic disease, stage T4, or both stage T3 and Gleason score ≥8). Secondary analyses examined staging phenotypes individually. Cox proportional hazards modelling and Kaplan-Meier survival analyses were used to further examine the relationship between mutation status and survival. RESULTS AND LIMITATIONS: We observed associations between PrCa aggressiveness and pLOF mutations in ATM, BRCA2, MSH2, and NBN (odds ratio = 2.67-18.9). These four genes and MLH1 were additionally associated with one or more secondary analysis phenotype. Carriers of germline mutations in these genes experienced shorter PrCa-specific survival (hazard ratio = 2.15, 95% confidence interval 1.79-2.59, p = 4 × 10-16) than noncarriers. CONCLUSIONS: This study provides further support that rare pLOF variants in specific genes are likely to increase aggressive PrCa risk and may help define the panel of informative genes for screening and treatment considerations. PATIENT SUMMARY: By combining data from several previous studies, we have been able to enhance knowledge regarding genes in which inherited mutations would be expected to increase the risk of more aggressive PrCa. This may, in the future, aid in the identification of men at an elevated risk of dying from PrCa

    The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in Alzheimer's disease

    Get PDF
    BACKGROUND: Trimethylamine N-oxide (TMAO), a small molecule produced by the metaorganismal metabolism of dietary choline, has been implicated in human disease pathogenesis, including known risk factors for Alzheimer's disease (AD), such as metabolic, cardiovascular, and cerebrovascular disease. METHODS: In this study, we tested whether TMAO is linked to AD by examining TMAO levels in cerebrospinal fluid (CSF) collected from a large sample (n = 410) of individuals with Alzheimer's clinical syndrome (n = 40), individuals with mild cognitive impairment (MCI) (n = 35), and cognitively-unimpaired individuals (n = 335). Linear regression analyses were used to determine differences in CSF TMAO between groups (controlling for age, sex, and APOE ε4 genotype), as well as to determine relationships between CSF TMAO and CSF biomarkers of AD (phosphorylated tau and beta-amyloid) and neuronal degeneration (total tau, neurogranin, and neurofilament light chain protein). RESULTS: CSF TMAO is higher in individuals with MCI and AD dementia compared to cognitively-unimpaired individuals, and elevated CSF TMAO is associated with biomarkers of AD pathology (phosphorylated tau and phosphorylated tau/Aβ42) and neuronal degeneration (total tau and neurofilament light chain protein). CONCLUSIONS: These findings provide additional insight into gut microbial involvement in AD and add to the growing understanding of the gut-brain axis

    Evidence for the role of EPHX2 gene variants in anorexia nervosa.

    Get PDF
    Anorexia nervosa (AN) and related eating disorders are complex, multifactorial neuropsychiatric conditions with likely rare and common genetic and environmental determinants. To identify genetic variants associated with AN, we pursued a series of sequencing and genotyping studies focusing on the coding regions and upstream sequence of 152 candidate genes in a total of 1205 AN cases and 1948 controls. We identified individual variant associations in the Estrogen Receptor-ß (ESR2) gene, as well as a set of rare and common variants in the Epoxide Hydrolase 2 (EPHX2) gene, in an initial sequencing study of 261 early-onset severe AN cases and 73 controls (P=0.0004). The association of EPHX2 variants was further delineated in: (1) a pooling-based replication study involving an additional 500 AN patients and 500 controls (replication set P=0.00000016); (2) single-locus studies in a cohort of 386 previously genotyped broadly defined AN cases and 295 female population controls from the Bogalusa Heart Study (BHS) and a cohort of 58 individuals with self-reported eating disturbances and 851 controls (combined smallest single locus P<0.01). As EPHX2 is known to influence cholesterol metabolism, and AN is often associated with elevated cholesterol levels, we also investigated the association of EPHX2 variants and longitudinal body mass index (BMI) and cholesterol in BHS female and male subjects (N=229) and found evidence for a modifying effect of a subset of variants on the relationship between cholesterol and BMI (P<0.01). These findings suggest a novel association of gene variants within EPHX2 to susceptibility to AN and provide a foundation for future study of this important yet poorly understood condition

    Cardiorespiratory fitness alters the influence of a polygenic risk score on biomarkers of AD

    Get PDF
    OBJECTIVE: To examine whether a polygenic risk score (PRS) derived from APOE4, CLU, and ABCA7 is associated with CSF biomarkers of Alzheimer disease (AD) pathology and whether higher cardiorespiratory fitness (CRF) modifies the association between the PRS and CSF biomarkers. METHODS: Ninety-five individuals from the Wisconsin Registry for Alzheimer's Prevention were included in these cross-sectional analyses. They were genotyped for APOE4, CLU, and ABCA7, from which a PRS was calculated for each participant. The participants underwent lumbar puncture for CSF collection. β-Amyloid 42 (Aβ42), Aβ40, total tau (t-tau), and phosphorylated tau (p-tau) were quantified by immunoassays, and Aβ42/Aβ40 and tau/Aβ42 ratios were computed. CRF was estimated from a validated equation incorporating sex, age, body mass index, resting heart rate, and self-reported physical activity. Covariate-adjusted regression analyses were used to test for associations between the PRS and CSF biomarkers. In addition, by including a PRS×CRF term in the models, we examined whether these associations were modified by CRF. RESULTS: A higher PRS was associated with lower Aβ42/Aβ40 (p < 0.001), higher t-tau/Aβ42 (p = 0.012), and higher p-tau/Aβ42 (p = 0.040). Furthermore, we observed PRS × CRF interactions for Aβ42/Aβ40 (p = 0.003), t-tau/Aβ42 (p = 0.003), and p-tau/Aβ42 (p = 0.001). Specifically, the association between the PRS and these CSF biomarkers was diminished in those with higher CRF. CONCLUSIONS: In a late-middle-aged cohort, CRF attenuates the adverse influence of genetic vulnerability on CSF biomarkers. These findings support the notion that increased cardiorespiratory fitness may be beneficial to those at increased genetic risk for AD

    Clonal hematopoiesis and risk of prostate cancer in large samples of European ancestry men.

    Full text link
    Little is known regarding the potential relationship between clonal hematopoiesis (CH) of indeterminate potential (CHIP), which is the expansion of hematopoietic stem cells with somatic mutations, and risk of prostate cancer, the fifth leading cause of cancer death of men worldwide. We evaluated the association of age-related CHIP with overall and aggressive prostate cancer risk in two large whole-exome sequencing studies of 75 047 European ancestry men, including 7663 prostate cancer cases, 2770 of which had aggressive disease, and 3266 men carrying CHIP variants. We found that CHIP, defined by over 50 CHIP genes individually and in aggregate, was not significantly associated with overall (aggregate HR = 0.93, 95% CI = 0.76-1.13, P = 0.46) or aggressive (aggregate OR = 1.14, 95% CI = 0.92-1.41, P = 0.22) prostate cancer risk. CHIP was weakly associated with genetic risk of overall prostate cancer, measured using a polygenic risk score (OR = 1.05 per unit increase, 95% CI = 1.01-1.10, P = 0.01). CHIP was not significantly associated with carrying pathogenic/likely pathogenic/deleterious variants in DNA repair genes, which have previously been found to be associated with aggressive prostate cancer. While findings from this study suggest that CHIP is likely not a risk factor for prostate cancer, it will be important to investigate other types of CH in association with prostate cancer risk

    Moxifloxacin enhances antiproliferative and apoptotic effects of etoposide but inhibits its proinflammatory effects in THP-1 and Jurkat cells

    Get PDF
    Etoposide (VP-16) is a topoisomerase II (topo II) inhibitor chemotherapeutic agent. Studies indicate that VP-16 enhances proinflammatory cytokines secretion from tumour cells, including IL-8, a chemokine associated with proangiogenic effects. Fluoroquinolones inhibit topo II activity in eukaryotic cells by a mechanism different from that of VP-16. The fluoroquinolone moxifloxacin (MXF) has pronounced anti-inflammatory effects in vitro and in vivo. We studied the effects of MXF and VP-16 on purified human topo II activity and further analysed their combined activity on proliferation, apoptosis and caspase-3 activity in THP-1 and Jurkat cells. Moxifloxacin alone slightly inhibited the activity of human topo II; however, in combination with VP-16 it led to a 73% reduction in enzyme activity. VP-16 inhibited cell proliferation in a time and dose-dependent manner. The addition of moxifloxacin for 72 h to low-dose VP-16 doubled its cytotoxic effect in THP-1 and Jurkat cells (1.8- and 2.6-fold decrease in cell proliferation, respectively) (P<0.004). Moxifloxacin given alone did not induce apoptosis but enhanced VP-16-induced apoptosis in THP-1 and Jurkat cells (1.8- and two-fold increase in annexin V positive cells and caspase-3 activity, respectively) (P<0.04). VP-16 induced the release of IL-8 in a time and dose-dependent manner from THP-1 cells. Moxifloxacin completely blocked the enhanced release of IL-8 induced by 0.5 and 1 μg ml−1 VP-16, and decreased IL-8 release from cells incubated for 72 h with 3 μg ml−1 VP-16 (P<0.001). VP-16 enhanced the release of IL-1β and TNF-α from THP-1 cells, whereas the addition of MXF prevented the enhanced cytokine secretion (P<0.001). We conclude that MXF significantly enhances VP-16 cytotoxicity in tumour-derived cells while preventing VP-16-induced proinflammatory cytokine release. This unique combination may have clinical benefits and cytotoxic drug ‘sparing effect' and should be further studied in vivo

    Combined Effect of a Polygenic Risk Score and Rare Genetic Variants on Prostate Cancer Risk.

    No full text
    Although prostate cancer is known to have a strong genetic basis and is influenced by both common and rare variants, the ability to investigate the combined effect of such genetic risk factors has been limited to date. We conducted an investigation of 81 094 men from the UK Biobank, including 3568 prostate cancer cases, to examine the combined effect of rare pathogenic/likely pathogenic/deleterious (P/LP/D) germline variants and common prostate cancer risk variants, measured using a polygenic risk score (PRS), on prostate cancer risk. The absolute risk of prostate cancer for HOXB13, BRCA2, ATM, and CHEK2 P/LP/D carriers ranged from 9% to 56%, and the absolute risk in noncarriers ranged from 2% to 31%, by age 85 yr, for men in the lowest and highest PRS decile, respectively. The high-penetrant HOXB13 G84E prostate cancer risk variant was most common in cases in the lowest PRS quintile (4.4%) and least common in cases in the highest PRS quintile (0.5%; p = 0.005), whereas there was no statistically significant difference in frequencies by PRS in controls. While rare and common variants strongly and distinctly influence prostate cancer onset, consideration of rare and common variants in conjunction will lead to more precise estimates of a man's lifetime risk of prostate cancer. PATIENT SUMMARY: We found that the risk of prostate cancer conveyed by rare variants could vary depending on an individual's genetic profile of common risk variants. This implies that in order to comprehensively assess genetic risk of prostate cancer, it is important to consider both rare and common variants
    corecore