112 research outputs found

    Developing Drinking-Water Quality Regulations and Standards

    Get PDF
    This document provides practical guidance to support the development or revision of customized national or subnational drinking-water quality regulations and standards.The principles and guidance presented are broadly applicable across countries and contexts, including more resource-limited settings. Supporting examples from both lower- and higher-income countries are included.Drinking-water quality regulations and standards developed or revised in accordance with this guidance will reflect the best practices identified in the WHO Guidelines for Drinking-water Quality to most effectively protect public health. Moreover, the regulations and standards will consider local needs, priorities and capacities to ensure that they are realistic and appropriate. Topics covered include:Guiding principlesGetting startedSelecting parameters and parameter limitsSetting out compliance monitoring requirement

    Kathmandu wastewater: the way forward?

    Get PDF
    Kathmandu’s urban population will grow from 2.6 million to 4.4 million in 2025. Its current wastewater system barely copes. A masterplan developed in 2009/10 proposes a series of actions to improve its performance with a mix of on-site and off-systems. As with many urban centres, the success of this plan is dependent on numerous external factors. In particular, land prices and land availability for decentralised systems, and treatment technologies were major constraints. The current wastewater status the 2025 vision, a problem tree analysis, together with issues and assumptions identified in the masterplan are presented. The paper concludes with a reflective view of the process adopted, with reference to Strategic Sanitation Approaches and the Sanitation 21 agenda and considers if and how the study may have achieved different outcomes using these principles

    Sanitation safety planning in Hanoi helps identify and manage health risks to workers, farmers and consumers from reuse of wastewater

    Get PDF
    Sanitation Safety Plannings (SSPs) are currently under a piloting phase by World Health Organisation (WHO). SSPs supplement and act as practical application guidance the four volumes of the 2006 WHO Guidelines for the Safe Use of Wastewater, Excreta and Greywater. Two pilot sites were selected in Hanoi, Vietnam to test WHO’s upcoming Sanitation Safety Planning manual: (1) large scale agriculture on the outskirts of Hanoi which uses untreated sewage; and (2) an organic composting site which uses effluent from a purpose built on-site sewage treatment plant for moisture control of the compost. This paper presents a summary of how SSPs helped identify and manage health risks to workers, farmers and consumers of produce from reuse of wastewater. Simple risk-based prioritised low cost improvement plans are summarised

    DNA content analysis of colorectal cancer defines a distinct ‘microsatellite and chromosome stable’ group but does not predict response to radiotherapy

    Get PDF
    Colorectal cancers (CRC) are thought to have genetic instability in the form of either microsatellite instability (MSI) or chromosomal instability (CIN). Recently, tumours have been described without either MSI or CIN, that is, microsatellite and chromosome stable (MACS) CRCs. We investigated the (i) frequency of the MACS-CRCs and (ii) whether this genotype predicted responsiveness to neoadjuvant chemoradiotherapy. To examine the frequency of MACS-CRCs, DNA content (ploidy) was examined in 89 sporadic microsatellite-stable CRCs using flow cytometry. The tumours were also screened for mutations in KRAS/BRAF/TP53/PIK3CA by QMC-PCR. To examine the value of tumour ploidy in predicting response to chemoradiotherapy, DNA content was tested in a separate group of 62 rectal cancers treated with neoadjuvant chemoradiotherapy. Fifty-one of 89 CRCs (57%) were aneuploid and 38 (43%) were diploid. There was no significant association between mutations in TP53/KRAS/BRAF/PIK3CA and ploidy. Testing of association between mutations revealed only mutual exclusivity of KRAS/BRAF mutation (P < 0.001). Of the 62 rectal cancers treated with neoadjuvant chemoradiotherapy, 22 had responded (Mandard tumour regression grade 1/2) and 40 failed to respond (Grade 3–5). Twenty-five of 62 (40%) tumours were diploid, but there was no association between ploidy and response to therapy. We conclude that MACS-CRCs form a significant proportion of microsatellite-stable CRCs with a mutation profile overlapping that of CRCs with CIN. A diploid genotype does not, however, predict the responsiveness to radiotherapy

    Identification of Pseudomonas aeruginosa exopolysaccharide Psl in biofilms using 3D OrbiSIMS

    Get PDF
    Secondary ion mass spectrometry (SIMS) offers advantages over both liquid extraction mass spectrometry and matrix assisted laser desorption mass spectrometry in that it provides the direct in situ analysis of molecules and has the potential to preserve the 3D location of an analyte in a sample. Polysaccharides are recognized as challenging analytes in the mass spectrometry of liquids and are also difficult to identify and assign using SIMS. Psl is an exopolysaccharide produced by Pseudomonas aeruginosa, which plays a key role in biofilm formation and maturation. In this Letter, we describe the use of the OrbiTrap analyzer with SIMS (3D OrbiSIMS) for the label-free mass spectrometry of Psl, taking advantage of its high mass resolving power for accurate secondary ion assignment. We study a P. aeruginosa biofilm and compare it with purified Psl to enable the assignment of secondary ions specific to the Psl structure. This resulted in the identification of 17 peaks that could confidently be ascribed to Psl fragments within the biofilm matrix. The complementary approach of the following neutral loss sequences is also shown to identify multiple oligosaccharide fragments without the requirement of a biological reference sample

    Peak grain forecasts for the US High Plains amid withering waters

    Get PDF
    Irrigated agriculture contributes 40% of total global food production. In the US High Plains, which produces more than 50 million tons per year of grain, as much as 90% of irrigation originates from groundwater resources, including the Ogallala aquifer. In parts of the High Plains, groundwater resources are being depleted so rapidly that they are considered nonrenewable, compromising food security. When groundwater becomes scarce, groundwater withdrawals peak, causing a subsequent peak in crop production. Previous descriptions of finite natural resource depletion have utilized the Hubbert curve. By coupling the dynamics of groundwater pumping, recharge, and crop production, Hubbert-like curves emerge, responding to the linked variations in groundwater pumping and grain production. On a state level, this approach predicted when groundwater withdrawal and grain production peaked and the lag between them. The lags increased with the adoption of efficient irrigation practices and higher recharge rates. Results indicate that, in Texas, withdrawals peaked in 1966, followed by a peak in grain production 9 y later. After better irrigation technologies were adopted, the lag increased to 15 y from 1997 to 2012. In Kansas, where these technologies were employed concurrently with the rise of irrigated grain production, this lag was predicted to be 24 y starting in 1994. In Nebraska, grain production is projected to continue rising through 2050 because of high recharge rates. While Texas and Nebraska had equal irrigated output in 1975, by 2050, it is projected that Nebraska will have almost 10 times the groundwater-based production of Texas

    Cten Is Targeted by Kras Signalling to Regulate Cell Motility in the Colon and Pancreas

    Get PDF
    CTEN/TNS4 is an oncogene in colorectal cancer (CRC) which enhances cell motility although the mechanism of Cten regulation is unknown. We found an association between high Cten expression and KRAS/BRAF mutation in a series of CRC cell lines (p = 0.03) and hypothesised that Kras may regulate Cten. To test this, Kras was knocked-down (using small interfering (si)RNA) in CRC cell lines SW620 and DLD1 (high Cten expressors and mutant for KRAS). In each cell line, Kras knockdown was mirrored by down-regulation of Cten Since Kras signals through Braf, we tested the effect of Kras knockdown in CRC cell line Colo205 (which shows high Cten expression and is mutant for BRAF but wild type for KRAS). Cten levels were unaffected by Kras knockdown whilst Braf knockdown resulted in reduced Cten expression suggesting that Kras signals via Braf to regulate Cten. Quantification of Cten mRNA and protein analysis following proteasome inhibition suggested that regulation was of Cten transcription. Kras knockdown inhibited cell motility. To test whether this could be mediated through Cten, SW620 cells were co-transfected with Kras specific siRNAs and a Cten expression vector. Restoring Cten expression was able to restore cell motility despite Kras knockdown (transwell migration and wounding assay, p<0.001 for both). Since KRAS is mutated in many cancers, we investigated whether this relationship could be demonstrated in other tumour models. The experiments were repeated in the pancreatic cancer cell lines Colo357 & PSN-1(both high Cten expressors and mutant for KRAS). In both cell lines, Kras was shown to regulate Cten and forced expression of Cten was able to rescue loss of cell motility following Kras knockdown in PSN-1 (transwell migration assay, p<0.001). We conclude that, in the colon and pancreas, Cten is a downstream target of Kras and may be a mechanism through which Kras regulates of cell motility

    The Stem Cell Marker CD133 Associates with Enhanced Colony Formation and Cell Motility in Colorectal Cancer

    Get PDF
    CD133 is a membrane molecule that has been, controversially, reported as a CSC marker in colorectal cancer (CRC). In this study, we sought to clarify the expression and role of CD133 in CRC. Initially the size of the CD133−expressing (CD133+) population in eight well-described CRC cell lines was measured by flow cytometry and was found to range from 0% to >95%. The cell line HT29 has a CD133+ population of >95% and was chosen for functional evaluation of CD133 after gene knockdown by RNA interference. A time course assay showed that CD133 inhibition had no significant effect on cell proliferation or apoptosis. However, CD133 knockdown did result in greater susceptibility to staurosporine-induced apoptosis (p = 0.01) and reduction in cell motility (p<0.04). Since gene knockdown may cause “off-target” effects, the cell line SW480 (which has a CD133+ population of 40%) was sorted into pure CD133+ and CD133− populations to allow functional comparison of isogenic populations separated only by CD133 expression. In concordance with the knockdown experiments, a time course assay showed no significant proliferative differences between the CD133+/CD133− populations. Also greater resistance to staurosporine-induced apoptosis (p = 0.008), greater cell motility (p = 0.03) and greater colony forming efficiency was seen in the CD133+ population than the CD133− population in both 2D and 3D culture (p<0.0001 and p<0.003 respectively). Finally, the plasticity of CD133 expression in tumour cells was tested. Quantitative PCR analysis showed there was transcriptional repression in the CD133− population of SW480. Prolonged culture of a pure CD133− population resulted in re-emergence of CD133+ cells. We conclude that CD133 expression in CRCs is associated with some features attributable to stemness and that there is plasticity of CD133 expression. Further studies are necessary to delineate the mechanistic basis of these features
    corecore