21 research outputs found

    On Intrinsic Magnetic Moments In Black Hole Candidates

    Full text link
    In previous work we found that many of the spectral properties of low mass x-ray binaries, including galactic black hole candidates could be explained by a magnetic propeller model that requires an intrinsically magnetized central object. Here we describe how the Einstein field equations of General Relativity and equipartition magnetic fields permit the existence of highly red shifted, extremely long lived, collapsing, radiating objects. We examine the properties of these collapsed objects and discuss characteristics that might lead to their confirmation as the source of black hole candidate phenomena.Comment: 4 pages, emulateapj, accepted for ApJ Letters, October 20, 200

    Direct Microlensing-Reverberation Observations of the Intrinsic magnetic Structure of AGN in Different Spectral States: A Tale of Two Quasars

    Full text link
    We show how direct microlensing-reverberation analysis performed on two well-known Quasars (Q2237 - The Einstein Cross and Q0957 - The Twin) can be used to observe the inner structure of two quasars which are in significantly different spectral states. These observations allow us to measure the detailed internal structure of quasar Q2237 in a radio quiet high-soft state, and compare it to quasar Q0957 in a radio loud low-hard state. We find that the observed differences in the spectral states of these two quasars can be understood as being due to the location of the inner radii of their accretion disks relative to the co-rotation radii of rotating intrinsically magnetic supermassive compact objects in the centers of these quasars.Comment: 26 page manuscript with 2 tables and 2 figures, submitted to Astronomical Journa

    On the Origin of the Radio/X-Ray Luminosity Correlation in Black Hole Candidates

    Full text link
    In previous work we found that the spectral state switch and other spectral properties of both neutron star (NS) and galactic black hole candidates (GBHC), in low mass x-ray binary systems could be explained by a magnetic propeller effect that requires an intrinsically magnetic central compact object. In later work we showed that intrinsically magnetic GBHC could be easily accommodated by general relativity in terms of magnetospheric eternally collapsing objects (MECO), with lifetimes greater than a Hubble time, and examined some of their spectral properties. In this work we show how a standard thin accretion disk and corona can interact with the central magnetic field in atoll class NS, and GBHC and active galactic nuclei (AGN) modeled as MECO, to produce jets that emit radio through infrared luminosity LRL_R that is correlated with mass and x-ray luminosity as LRM0.750.92Lx2/3L_R \propto M^{0.75 - 0.92}L_x^{2/3} up to a mass scale invariant cutoff at the low/high spectral state switch. Comparing the MECO-GBHC/AGN model to observations, we find that the correlation exponent, the mass scale invariant cutoff, and the radio luminosity ratios of AGN, GBHC and atoll class NS are correctly predicted, which strongly implies that GBHC and AGN have observable intrinsic magnetic moments and hence do not have event horizons.Comment: 6 pages, 1 figure. Accepted by MNRA
    corecore