4 research outputs found

    Composite trait Mendelian randomization reveals distinct metabolic and lifestyle consequences of differences in body shape

    Get PDF
    Obesity is a major risk factor for a wide range of cardiometabolic diseases, however the impact of specific aspects of body morphology remains poorly understood. We combined the GWAS summary statistics of fourteen anthropometric traits from UK Biobank through principal component analysis to reveal four major independent axes: body size, adiposity, predisposition to abdominal fat deposition, and lean mass. Mendelian randomization analysis showed that although body size and adiposity both contribute to the consequences of BMI, many of their effects are distinct, such as body size increasing the risk of cardiac arrhythmia (b = 0.06, p = 4.2 ∗ 10 <sup>-17</sup> ) while adiposity instead increased that of ischemic heart disease (b = 0.079, p = 8.2 ∗ 10 <sup>-21</sup> ). The body mass-neutral component predisposing to abdominal fat deposition, likely reflecting a shift from subcutaneous to visceral fat, exhibited health effects that were weaker but specifically linked to lipotoxicity, such as ischemic heart disease (b = 0.067, p = 9.4 ∗ 10 <sup>-14</sup> ) and diabetes (b = 0.082, p = 5.9 ∗ 10 <sup>-19</sup> ). Combining their independent predicted effects significantly improved the prediction of obesity-related diseases (p < 10 <sup>-10</sup> ). The presented decomposition approach sheds light on the biological mechanisms underlying the heterogeneity of body morphology and its consequences on health and lifestyle

    Robust Causal Inference Methods to Assess Risk Factors for Common Diseases

    No full text
    The study of complex traits, those influenced by multiple genetic and environmental factors, has long been a cornerstone of genetic research, where scientists have sought to untangle this complexity. These traits include a vast array of human characteristics, from molecular phenotypes to diseases. The advent of Genome-Wide Association Studies (GWAS) following human genome sequencing marked an essential moment in this pursuit. These studies, characterised by their large sample size and examination of millions of genetic variants, have significantly advanced our understanding of the genetic architecture underlying complex traits. GWAS have unearthed numerous genetic markers associated with various traits, providing vital clues for further exploration. GWAS have not only identified genetic associations to complex traits, but have also helped re- searchers explore the relationships between these traits. Understanding the causal relationships among traits is essential due to its potential to improve medical practices and public health interventions. In response, Mendelian Randomisation (MR) emerged as a genetically-informed version of previous causal inference methods, such as Randomised Control Trials (RCTs). MR uses genetic variants as instrumental variables to elucidate causal relationships between traits, distinguishing true causation from mere correlation. As a statistical method, MR comes with several assumptions that must hold for accurate estimation. However, validating some of these assumptions can be challenging, potentially introducing bias in the estimation of causal eïŹ€ects. During my thesis, I investigated assumption violations that MR often faces, particularly in two scenarios: (i) the presence of unmeasured heritable confounding factors introducing spurious causal relationships and (ii) the heterogeneity of causal eïŹ€ects due to potential underlying pleiotropic pathways or confounder mechanisms. To address the first assumption violation, I developed an extension to the MR model known as LHC-MR, which accounts for the presence of a Latent Heritable Confounder. LHC-MR is applicable to association summary statistics of trait pairs, allowing simultaneous estimation of bi-directional causal eïŹ€ects, direct heritabilities, and confounder eïŹ€ects on the pair. For the second assumption violation, I proposed an approach, PWC-MR, that leverages Phenome-Wide association data across several traits to perform informative Clustering of the focal trait instruments. PWC-MR revealed that for body mass index (BMI), distinct clusters of instruments exist with heterogeneous causal eïŹ€ects on educational attainment. Lastly, I explored indirect genetic eïŹ€ects using individual-level genetic data of sibling pairs. The aim was to estimate the causal eïŹ€ect of the parental environment/rearing on oïŹ€spring traits in later life, using MR. In summary, this journey from the study of complex traits to the emergence of GWAS and MR as tools for causal inference has reshaped our understanding of genetics. While MR oïŹ€ers great promise, its often-violated assumptions necessitate careful consideration, and my work aimed to address some of these challenges. -- L’étude des traits complexes, qui sont influencĂ©s par de multiples facteurs gĂ©nĂ©tiques et environnemen- taux, a toujours Ă©tĂ© un pilier de la recherche en gĂ©nĂ©tique, oĂč les scientifiques ont cherchĂ© Ă  dĂ©mĂȘler cette complexitĂ©. Ces traits englobent une vaste gamme de caractĂ©ristiques humaines, comme des phĂ©notypes molĂ©culaires mais aussi certaines maladies courantes. L’avĂšnement des Ă©tudes d’association pangĂ©nomique (GWAS) Ă  la suite du sĂ©quençage du gĂ©nome humain, a marquĂ© un moment essentiel dans cette quĂȘte. Ces Ă©tudes, caractĂ©risĂ©es par leur grande taille d’échantillon et l’analyse de millions de variants gĂ©nĂ©tiques, ont considĂ©rablement avancĂ© notre comprĂ©hension de l’architecture gĂ©nĂ©tique des traits complexes, en permettant d’identifier de nombreux marqueurs gĂ©nĂ©tiques associĂ©s Ă  divers traits, fournissant ainsi des indices essentiels pour de futures explorations. Les GWAS ont non seulement permis d’identifier des associations gĂ©nĂ©tiques, mais elles ont Ă©galement aidĂ© les chercheurs Ă  explorer les relations entre ces traits. Il est essentiel de comprendre les relations de cause Ă  eïŹ€et entre les traits pour pouvoir amĂ©liorer les pratiques mĂ©dicales et les interventions de santĂ© publique. En rĂ©ponse, la Randomisation MendĂ©lienne (MR), version gĂ©nĂ©tiquement informĂ©e des mĂ©thodes prĂ©cĂ©dentes d’infĂ©rence causale, telles que les Essais ContrĂŽlĂ©s RandomisĂ©s, a Ă©mergĂ©. La MR utilise des variants gĂ©nĂ©tiques en tant que variables instrumentales pour Ă©lucider les relations de cause Ă  eïŹ€et entre les traits, distinguant ainsi vĂ©ritable causalitĂ© et simple corrĂ©lation. C’est une mĂ©thode statistique qui repose sur plusieurs hypothĂšses qui doivent ĂȘtre respectĂ©es afin d’obtenir une estimation prĂ©cise. Cependant, la validation de certaines de ces hypothĂšses peut s’avĂ©rer diïŹƒcile et leur violation peut introduire un biais dans l’estimation des eïŹ€ets de causalitĂ©. Au cours de ma thĂšse, j’ai examinĂ© les violations d’hypothĂšses auxquelles la MR est souvent confrontĂ©e, en particulier dans deux scĂ©narios : (i) la prĂ©sence de facteurs confondants hĂ©rĂ©ditaires non mesurĂ©s introduisant des relations de causalitĂ© fallacieuses et (ii) l’hĂ©tĂ©rogĂ©nĂ©itĂ© des eïŹ€ets de causalitĂ© due Ă  d’éventuels eïŹ€ets plĂ©iotropiques ou Ă  des facteurs confondants. Concernant la premiĂšre violation d’hypothĂšse, j’ai dĂ©veloppĂ© une extension du modĂšle MR appelĂ©e LHC-MR, qui prend en compte la prĂ©sence d’un facteur Confondant HĂ©rĂ©ditaire Latent. LHC-MR utilise des statistiques synthĂ©tiques issues des GWAS pour Ă©tudier la relation entre deux traits, via l’estimation simultanĂ©e d’eïŹ€ets de causalitĂ© bidirectionnels, d’hĂ©ritabilitĂ©s directes et des eïŹ€ets du facteur confondant sur chacun des traits. Pour aborder le deuxiĂšme scĂ©nario, j’ai proposĂ© une approche, PWC-MR, qui permet d’eïŹ€ectuer un regroupement informatif des instruments, sĂ©lectionnĂ©s pour leur association avec le facteur de risquĂ© d’intĂ©rĂȘt, en exploitant des donnĂ©es d’association gĂ©nĂ©tique avec plusieurs autres traits. PWC-MR a rĂ©vĂ©lĂ© que, pour l’indice de masse corporelle (IMC), il existe des groupes distincts d’instruments avec des eïŹ€ets de causalitĂ© hĂ©tĂ©rogĂšnes sur le niveau d’éducation. Enfin, j’ai explorĂ© les eïŹ€ets gĂ©nĂ©tiques indirects en utilisant des donnĂ©es gĂ©nĂ©tiques d’individus issus d’une mĂȘme fratrie. L’objectif Ă©tait d’utiliser la MR pour estimer l’eïŹ€et de causalitĂ© de l’environnement parental sur les traits des enfants Ă  un stade ultĂ©rieur de leur vie. En rĂ©sumĂ©, l’étude des traits complexes, depuis l’émergence des GWAS jusqu’à l’utilisation de la MR en tant qu’outil pour l’infĂ©rence de causalitĂ©, a remodelĂ© notre comprĂ©hension de la gĂ©nĂ©tique. Bien que la MR oïŹ€re de grandes promesses, ses hypothĂšses souvent violĂ©es nĂ©cessitent une rĂ©flexion minutieuse, et mon travail de doctorat a permis de proposer des solutions pour relever certains de ces dĂ©fis

    PheWAS-based clustering of Mendelian Randomisation instruments reveals distinct mechanism-specific causal effects between obesity and educational attainment

    No full text
    Mendelian Randomisation (MR) estimates causal effects between risk factors and complex outcomes using genetic instruments. Pleiotropy, heritable confounders, and heterogeneous causal effects violate MR assumptions and can lead to biases. To alleviate these, we propose an approach employing a Phenome-Wide association Clustering of the MR instruments (PWC-MR) and apply this method to revisit the surprisingly large apparent causal effect of body mass index (BMI) on educational attainment (EDU): [Formula: see text] = -0.19 [-0.22, -0.16]. First, we cluster 324 BMI-associated genetic instruments based on their association with 407 traits in the UK Biobank, which yields six distinct groups. Subsequent cluster-specific MR reveals heterogeneous causal effect estimates on EDU. A cluster enriched for socio-economic indicators yields the largest BMI-on-EDU causal effect estimate ([Formula: see text] = -0.49 [-0.56, -0.42]) whereas a cluster enriched for body-mass specific traits provides a more likely estimate ([Formula: see text] = -0.09 [-0.13, -0.05]). Follow-up analyses confirms these findings: within-sibling MR ([Formula: see text] = -0.05 [-0.09, -0.01]); MR for childhood BMI on EDU ([Formula: see text] = -0.03 [-0.06, -0.002]); step-wise multivariable MR ([Formula: see text] = -0.05 [-0.07, -0.02]) where socio-economic indicators are jointly modelled. Here we show how the in-depth examination of the BMI-EDU causal relationship demonstrates the utility of our PWC-MR approach in revealing distinct pleiotropic pathways and confounder mechanisms.</p

    Genetic insights into the causal relationship between physical activity and cognitive functioning

    Get PDF
    Abstract Physical activity and cognitive functioning are strongly intertwined. However, the causal relationships underlying this association are still unclear. Physical activity can enhance brain functions, but healthy cognition may also promote engagement in physical activity. Here, we assessed the bidirectional relationships between physical activity and general cognitive functioning using Latent Heritable Confounder Mendelian Randomization (LHC-MR). Association data were drawn from two large-scale genome-wide association studies (UK Biobank and COGENT) on accelerometer-measured moderate, vigorous, and average physical activity (N = 91,084) and cognitive functioning (N = 257,841). After Bonferroni correction, we observed significant LHC-MR associations suggesting that increased fraction of both moderate (b = 0.32, CI95% = [0.17,0.47], P = 2.89e − 05) and vigorous physical activity (b = 0.22, CI95% = [0.06,0.37], P = 0.007) lead to increased cognitive functioning. In contrast, we found no evidence of a causal effect of average physical activity on cognitive functioning, and no evidence of a reverse causal effect (cognitive functioning on any physical activity measures). These findings provide new evidence supporting a beneficial role of moderate and vigorous physical activity (MVPA) on cognitive functioning
    corecore