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ARTICLE

Composite trait Mendelian randomization reveals
distinct metabolic and lifestyle consequences of
differences in body shape
Jonathan Sulc1,2, Anthony Sonrel2,3, Ninon Mounier1,2, Chiara Auwerx 1,2,4, Eirini Marouli 5,6,

Liza Darrous 1,2, Bogdan Draganski 7,8, Tuomas O. Kilpeläinen 9, Peter Joshi 10, Ruth J. F. Loos 11,12,13 &

Zoltán Kutalik 1,2,14✉

Obesity is a major risk factor for a wide range of cardiometabolic diseases, however the

impact of specific aspects of body morphology remains poorly understood. We combined the

GWAS summary statistics of fourteen anthropometric traits from UK Biobank through

principal component analysis to reveal four major independent axes: body size, adiposity,

predisposition to abdominal fat deposition, and lean mass. Mendelian randomization analysis

showed that although body size and adiposity both contribute to the consequences of BMI,

many of their effects are distinct, such as body size increasing the risk of cardiac arrhythmia

(b= 0.06, p= 4.2 ∗ 10−17) while adiposity instead increased that of ischemic heart disease

(b= 0.079, p= 8.2 ∗ 10−21). The body mass-neutral component predisposing to abdominal

fat deposition, likely reflecting a shift from subcutaneous to visceral fat, exhibited health

effects that were weaker but specifically linked to lipotoxicity, such as ischemic heart disease

(b= 0.067, p= 9.4 ∗ 10−14) and diabetes (b= 0.082, p= 5.9 ∗ 10−19). Combining their

independent predicted effects significantly improved the prediction of obesity-related dis-

eases (p < 10−10). The presented decomposition approach sheds light on the biological

mechanisms underlying the heterogeneity of body morphology and its consequences on

health and lifestyle.
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Obesity is one of the main risk factors for many non-
communicable diseases, such as type 2 diabetes (reviewed
in ref. 1) and cardiovascular diseases (reviewed in ref. 2).

The associated disease risk and underlying biology of obesity are
generally studied through the lens of body mass index (BMI,
weight [kg]/height2 [m2]), which uses excess body mass as a
surrogate for adiposity. This approximation provides a reasonably
accurate predictor at the population level3,4 but is blind to many
aspects of body shape and composition that may be critical to
disease etiology. Indeed, disease risk and progression have been
shown to be affected by the location and type of the adipose tissue
in which excess calories are stored3–6. Abdominal obesity in
particular, usually assessed using waist circumference or waist-to-
hip ratio (WHR), is associated with increased disease risk and
mortality independent of BMI3.

Although the exact mechanisms underlying the consequences
of adiposity on health have not been fully elucidated, the pre-
dominant hypothesis is that of adipose tissue expandability: that
excess calories are preferentially stored in subcutaneous adipose
tissue (SAT), which can expand with little to no deleterious
impact on health7,8. When its capacity for expansion is exceeded,
adipose cells hypertrophy, causing local inflammation, and fat is
increasingly stored as ectopic fat in organs and as visceral adipose
tissue (VAT) around organs in a process similar to a mild form of
lipodystrophy. Ectopic and visceral fat are thought to play a
central role in many of the direct consequences of obesity.

Much remains unknown about the genetic and environmental
factors affecting body fat distribution and its contribution to
health outcomes. Currently available non-invasive imaging
techniques such as magnetic resonance imaging (MRI) and dual-
energy X-ray absorptiometry (DXA) allow the accurate mea-
surement of adipose mass in different parts of the body and have
considerably improved our understanding of the impact of dif-
ferent subtypes of adiposity on health9,10. However, such tech-
niques remain costly and are therefore generally restricted to
smaller sample sizes.

An alternative approach is the concurrent analysis of multiple
traits, leveraging the co-occurring changes in multiple phenotypes
to understand the underlying causes and mechanisms. Analysis of
variance methods, such as principal component analysis (PCA),
have been used to investigate the complex architecture underlying
body morphology, revealing the main axes of phenotypic varia-
tion and increasing the statistical power to detect novel loci
affecting body morphology11. While this has improved our
understanding of the genetic basis underlying common and dis-
tinct components of anthropometric traits, their impact on health
and quality of life remains unknown. Other approaches such as
clustering and canonical correlation analysis have identified single
nucleotide polymorphisms (SNPs) associated with healthier
metabolic profiles, despite higher BMI and/or body fat
percentage12–15. However, these hypothesis-driven approaches
(i.e., identifying clusters of functionally similar SNPs based on
both obesity measures and health outcomes) are not suited to
determine the causality of these correlated differences or the
directionality of potential causal effects because the SNP groups
have different health consequences by construction.

Here we followed a hypothesis-free approach to isolate inde-
pendent axes of variations in body shape and size and investi-
gated their health consequences. We performed a PCA on GWAS
summary statistics of 14 anthropometric traits from the UK
Biobank16 to extract orthogonal components, each representing
different features of body shape (Fig. 1). We show that these
measures of body shape can be summarized using four principal
components (PCs) affecting body size, adiposity, abdominal fat
deposition, and lean mass, respectively. Enrichment analyses
highlighted differences in the pathways and tissues involved in

these composite traits, providing insight into the underlying
biological mechanisms. We then used robust cross-sex Mendelian
randomization (MR) to assess the impact of these independent
components on health and lifestyle. While many health and
lifestyle consequences were shared with individual traits, these
orthogonal PCs allowed us to better disentangle the independent
contributions of different aspects of body shape. The results can
be explored using the shiny app which can be downloaded by
following the instructions at http://wp.unil.ch/sgg/pca-mr/. Fur-
thermore, the combination of these PCs improved the prediction
accuracy of obesity-related diseases.

Results
PCA of genetic effects. A schematic representation of our
composite MR analysis framework is shown in Fig. 1. We selected
14 anthropometric and bioimpedance-derived traits (Supple-
mentary Data 1) as the basis for the PCA, 13 of which were
available in the UK Biobank16 with genome-wide summary sta-
tistics made available by the Neale lab (www.nealelab.is/uk-
biobank). Summary statistics for WHR were not available in the
UK Biobank, therefore we performed a GWAS in the UK Biobank
following the same procedure as that used by the Neale lab. SNPs
which were then genome-wide significant (GWS, p < 5 × 10−8)
for any trait were pruned to be independent. The resulting SNP x
traits matrix of effect estimates was subjected to PCA. The
loadings of each PC were then rescaled according to the pheno-
typic correlation between these traits in the UK Biobank so as to
obtain standardized effect sizes, i.e. the resulting PC phenotypes
would have a variance of 1. SNP-PC associations were then cal-
culated genome-wide and SNPs for each PC were re-pruned
individually.

The top four PCs explained more than 99% of the total variance
(Fig. 2, Supplementary Data 2). PC1 (73.3% variance) represents an
overall increase in body size, with positive weights for all traits
indicating a slightly disproportionate increase in body mass
compared to height, resulting in higher BMI as well. PC2 (19.9%)
shows a decrease in height with an increase in fat mass at the expense
of lean mass. PC3 (3.8%) is largely BMI- and body fat mass-neutral,
decreasing hip circumference, and increasing waist circumference
and hence WHR, reflecting a shift in body fat from hips to the waist.
PC4 (2.4%) resulted in decreased height and increased BMI, with an
increase in lean mass at the expense of fat mass.

Performing this analysis using male- or female-specific
summary statistics produced very similar results, though PC3
explained less variance than PC4 in men (Supplementary
Data 3–4, Supplementary Note 1). PCs were also robust to
changes in the selection of specific traits. For example, excluding
WHR yielded effect estimates which were highly correlated with
those obtained using the full set of traits (all |r| > 0.99, see
Supplementary Note 2), though the altered explained variance
also resulted in the reordering of PCs 3 and 4.

PCs 1–3 were highly correlated with weight, BMI, and WHR,
respectively, both phenotypically (r ≥ 0.70, Supplementary Fig. 3)
and in terms of their causal effects on the tested outcomes. The
(genetically) orthogonal nature of PCs nevertheless resulted in
much lower phenotypic correlation with each other than between
traits (e.g., the phenotypic correlation between PC1 and PC2 was
only 0.36 while that between weight and BMI was 0.90,
Supplementary Fig. 4, Supplementary Data 5). Note that the
phenotypic realization of PCs are not orthogonal, and their
correlation is therefore not zero, due to differences between their
environmental and genetic correlation. However, the MR-derived
causal effect estimates of PCs are independent and therefore
additive (though they may still be correlated), which is not the
case for individual traits.
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For brevity and clarity, we mainly describe the PCs in
comparison with BMI and occasionally weight or WHR. Other
traits had causal effects similar to or weaker than these traits (e.g.,
the effects of body fat percentage and BMI on the disease had a
correlation coefficient r= 0.95, p= 7.6 × 10−43) or were less
relevant to obesity-related health outcomes (e.g., height).

We found 615 independent GWS SNPs associated with PC1
(body size), 641 with PC2 (adiposity), 354 with PC3 (predisposi-
tion to abdominal fat deposition), and 610 with PC4 (lean mass).
Among these, respectively 3, 83, 137, and 330 SNPs did not reach
genome-wide significance for any individual trait. For compar-
ison, BMI had 532 independent GWS SNPs.

Tissue/pathway enrichment. We tested the PCs for the enrich-
ment of genes expressed in specific tissues using the MAGMA
method17 through the FUMA interface18 in both GTEx v819 and
brain development and aging data from BrainSpan20. We also
tested for their enrichment of molecular pathway terms from the
DEPICT dataset21 using PASCAL22. The tissue-enrichment
results of the four PCs as well as weight, BMI, and WHR are
shown in Fig. 3 and listed in Supplementary Data 6–9.

Loci associated with both PC1 (body size) and PC2 (adiposity)
were mainly enriched for genes expressed in the cerebellum
(p ≤ 2.2 × 10−5) and the pituitary gland (p ≤ 5.7 × 10−4). Using
data from BrainSpan20, we found PC2 to be further enriched for
genes expressed in the brain specifically during the early to late
mid-prenatal phases of development (p ≤ 6.1 × 10−4).

PC3- (predisposition to abdominal fat deposition) associated
SNPs were harbored by genes most enriched for expression in
SAT (p= 3.0 × 10−14), followed by VAT (p= 4.2 × 10−10),
female reproductive tissues (breast mammary tissue, ecto- and
endocervix, and uterus, all p ≤ 2.4 × 10−10), nerves (tibial,
p= 2 × 10−15), arteries (p ≤ 2.2 × 10−9), and digestive system
(p ≤ 8.8 × 10−5). Note that using sex-specific (e.g., male-specific)

summary statistics and PC loadings with the same gene
expression datasets produced a similar enrichment for female-
specific tissues. Data from BrainSpan showed PC3 to be enriched
for genes expressed in the late prenatal brain (p= 9.3 × 10−8).

PC4 (lean mass) showed similar enrichment to that of PC3,
though stronger for the digestive system (p ≤ 1.6 × 10−10) and
some female reproductive tissues (uterus, ecto- and endocervix,
all p ≤ 1.3 × 10−12), and weaker for adipose tissue and tibial nerve.
PC4 was also enriched for genes expressed in the prostate
(p= 2.9 × 10−4). In BrainSpan, PC4 also showed enrichment for
genes expressed prenatally in the brain.

Loci associated with BMI showed slightly stronger enrichment
than PCs 1 and 2 for genes expressed in the cerebellum, as well as
other areas of the adult brain, including the basal ganglia,
hippocampus, hypothalamus, amygdala, and frontal cortex. They
were also enriched for genes expressed in the mid-prenatal brain,
similar to that found for PC2, if slightly weaker.

The analysis of molecular pathways (Supplementary Data 10)
showed qualitatively similar enrichment for PCs 1 (341 pathways)
and 2 (348), weight (318), and BMI (293). These were mostly
terms related to the brain, synapses, behavior, or learning. PC3
had the most numerous enriched terms (628) and the strongest
enrichment overall. Most of the enriched terms were not related
to brain function, but to embryogenesis and morphology, with
many others specifically concerning adiposity, metabolism, and
glucose homeostasis. Other terms were related to vascular or
heart function, or hormones. PC4 (569) showed some overlap in
terms with PC3, mainly in terms related to embryogenesis and
morphology. Overall, 1067 pathways were found to be enriched
for at least one PC.

Cross-sex MR analysis. We used inverse-variance weighted (IVW)
MR to test for causal effects of the 14 anthropometric traits and PCs
on disease outcomes, continuous measures of health, lifestyle

Fig. 1 Overview of the methods. Summary statistics for anthropometric traits from the UK Biobank were pruned for independence before being subjected
to principal component analysis (PCA). Principal component-associated SNPs were tested for enrichment in genes expressed in certain tissues or in
pathways. The genetic effects on the resulting components were scaled to obtain effect sizes corresponding to a trait with a variance of 1 (standardized).
Mendelian randomization was used to determine the impact of these composite traits on lifestyle and health outcomes. Using these effect estimates, the
individual risk was predicted in the UK Biobank and accuracy compared to BMI and WHR.
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factors, and diet, as well as the reverse. To avoid bias in the MR
estimates due to sample overlap, we used sex-specific effects from
opposite sexes for exposures and outcomes (male exposure–female
outcome and female exposure–male outcome, using the same
combined-sex PC loadings for exposure PCs). This produces
unbiased estimates of the sex-specific causal effects in the sex used
in the outcome, provided the strength of the instruments’ associa-
tion with the exposure was not different between sexes. The two
cross-sex causal effect estimates (female-to-male and male-to-
female) were then meta-analyzed using inverse-variance weighting.
Where the strength of the instruments’ association with the expo-
sure differed between sexes, namely for WHR and PC3 (abdominal
fat distribution), the meta-analyzed causal effect estimates may be
biased (generally towards the null). Although the effect size esti-
mates may be slightly over- or underestimated, this should not
affect the type I error rate (see “Methods”).

Effects on disease risk. PC1 (body size) increased the risk of
many diseases (Fig. 4). An increase of one standard deviation

(SD) increased the absolute risk of diabetes by 1.7% (95% CI:
1.3–2.1), that of hypertension by 2.3% (95% CI: 1.4–3.2), as well
as many other diseases, such as nerve disorders, diseases of the
veins and circulatory system, and prolapsed disc (Supplementary
Data 11). Although it also increased the risk of cardiac arrhyth-
mias by 0.93% (95% CI: 0.71–1.1), it did not significantly affect
the risk of hypercholesterolemia or heart disease.

PC2 (adiposity) had much stronger effects on many obesity-
related diseases (Fig. 4), where a 1 SD increase also increased the
absolute risk of diabetes by 2.1% (95% CI: 1.7–2.5), hypertension
by 6.8% (95% CI: 5.8–7.7), as well as hypercholesterolemia by
3.4% (95% CI: 2.8–4.0) and ischemic heart disease (IHD) by 1.8%
(95% CI: 1.5–2.2). The risk of many other diseases, such as
arthrosis and diseases of the nervous system were also increased
(Supplementary Data 11).

PC3 (predisposition to abdominal fat deposition), despite being
weight- and BMI-neutral, was a risk factor for many of the same
obesity-related diseases as PC2 (Fig. 4, Supplementary Data 11).
A 1 SD increase in PC3 increased the absolute risk of diabetes by

Fig. 2 The contributions of each trait to the first four genetic principal components (PCs). The explained variance of each PC is included in parentheses
along with the descriptive name used in the main text. The loadings presented here are those typically used in the principal component analysis (PCA),
scaled such that the sum of the squared weights is equal to 1 (as opposed to the scaling used to obtain composite traits with a variance of 1). This provides
a consistent scale and makes PCs more easily comparable with each other.
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1.6% (95% CI: 1.2–1.9), hypertension by 4.2% (95% CI: 3.3–5.0),
hypercholesterolemia by 3.0% (95% CI: 2.4–3.6), and IHD by
1.6% (95% CI: 1.2–2.0).

PC4 (lean mass) had few consequences on health, only
significantly increasing the risk of nerve disorders and diseases,

carpal tunnel syndrome, and joint disorders (Fig. 4, Supplemen-
tary Data 11).

For comparison, a 1 SD increase in BMI (5.1 kg/m2 in women,
4.2 kg/m2 in men) increased the risk of diabetes by 3.8% (95% CI:
3.4–4.2), hypertension by 9.9% (95% CI: 8.8–11.0),

Fig. 3 Body size and accumulation of body fat were mainly enriched for genes expressed in the brain, while the others were enriched for a broader
range of tissues. Enrichment of traits and principal components (PCs) for tissue-specific gene expression (negative log 10 p-values). Genome-wide SNP
effect p-values were analyzed using MAGMA on GTEx v8 data (54 tissues). Results not significant after Bonferroni correction are masked in white. Traits
with no significant enrichment results are hidden for clarity (full results are available in Supplementary Data 6).

Fig. 4 Single and composite traits increase the risk of multiple diseases. Mendelian randomization causal effects of traits and principal components
(PCs) on a selection of diseases on a standardized scale. The 95% confidence interval of the effect is indicated in brackets. Effects that were not significant
at the Bonferroni-corrected threshold (p < 4.3 × 10−5) are colored in white. The full list of effects can be found in Supplementary Data 11.
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hypercholesterolemia by 3.0% (95% CI: 2.3–3.7), and IHD by
1.8% (95% CI: 1.4–2.2). Weight and WHR had similar, if
somewhat weaker, effects (see Supplementary Data 11). Although
in many cases these effects exceed those of individual PCs, they
remain less than the cumulative (summed) effects of the four PCs
(Supplementary Figs. 5–25).

Effects on continuous health outcomes. Many continuous health
indicators were affected by both PCs and traits, in a manner
largely consistent with expectations (Supplementary Data 12).

Consistent with the increased risk of diabetes, PCs 1–3 all
increased the levels of glycated hemoglobin in blood, though the
effect was strongest for PC2 (b= 0.13, 95% CI: 0.11–0.15).
Glucose levels were similarly affected, though the effects were
weaker. All three PCs also increased triglyceride levels (b between
0.095 and 0.24) and decreased HDL cholesterol (b between −0.22
and −0.16), but only PC1 decreased LDL cholesterol (b=−0.076,
95% CI: −0.094 to −0.059) and total cholesterol. They all
increased blood pressure (systolic and/or diastolic), with the
strongest effects from PC2 (b > 0.15). Plasma concentrations of
several liver enzymes, such as γ-glutamyltransferase (GGT) and
alanine aminotransferase (ALT), were found to be increased as
well, possibly indicating liver damage.

PCs 1 and 2 also increased levels of cystatin C and decreased
albumin, possibly indicative of impaired kidney function23,
whereas the effects of PC3 were in the opposite direction
(decreasing cystatin C and increasing albumin). C-reactive
protein (CRP) was also increased by PCs 1 and 2 (b1= 0.17,
95% CI 0.15–0.20; b2= 0.25, 95% CI 0.22–0.27) but unaffected by
PC3. PCs 1–3 all strongly decreased levels of sex hormone-
binding globulin (SHBG) with the strongest effects from PC2
(b=−0.19, 95% CI: −0.21 to −0.16), as well as testosterone
where the effects of PCs 1 and 3 were stronger (b1=−0.065, 95%
CI −0.086 to −0.043; b3=−0.058, 95% CI −0.082 to −0.034).

PC4 mainly increased creatinine levels while decreasing CRP
(b=−0.090, 95% CI: −0.11 to −0.067) and the maximum heart
rate during fitness test. The levels of triglycerides and the liver
function markers GGT and ALT were slightly decreased but only
alkaline phosphatase reached Bonferroni-corrected significance
(b=−0.068, 95% CI: −0.09 to −0.046).

The effects of BMI were comparable to a combination of PCs 1
and 2, increasing levels of glycated hemoglobin (b= 0.2, 95% CI
0.17–0.22) and glucose (b= 0.12, 95% CI 0.10–0.15), as well as
increasing the levels of triglycerides while decreasing both HDL
(b=−0.29, 95% CI −0.32 to −0.26) and LDL (b=−0.059, 95%
CI −0.082 to −0.037) cholesterol. Systolic and diastolic blood
pressure was also increased, as were levels of CRP (b= 0.33, 95%
CI 0.3–0.36) and liver function markers such as ALT and GGT.
SHBG (b=−0.24, 95% CI −0.26 to −0.21) and testosterone
(b=−0.11, 95% CI −0.13 to −0.084) were also decreased.

Effects on lifestyle factors. PC1 slightly reduced socio-economic
status (SES), as shown by increased Townsend deprivation index
(b= 0.033, 95% CI: 0.017–0.049). This was accompanied by a
longer working week, as well as an increase in smoking and
alcohol consumption, particularly spirits (Fig. 5, Supplementary
Data 13). The duration and frequency of physical activity, as well
as walking pace, were all decreased in favor of increased time
spent using the computer. PC1 also increased daytime dozing and
napping but decreased snoring.

The effects of PC2 on SES were similar but much more
pronounced (Fig. 5, Supplementary Data 13), not only associated
with increased Townsend deprivation index (b= 0.057, 95% CI:
0.037–0.076) and the likelihood of having a job involving heavy
physical work (b= 0.11, 95% CI: 0.086–0.14), but strongly linked

to decreased income, fluid intelligence score, and education (all
b <−0.14). Accompanying these were lifestyle changes similar to
those of PC1, increasing smoking and the frequency of alcohol
consumption, with a decrease in wine in favor of spirits and
alcohol being taken more often outside of meals. Although PC2
increased the duration of walks (b= 0.05, 95% CI: 0.031–0.069)
and vigorous activity, the duration of walking for pleasure was
decreased (b=−0.044, 95% CI: −0.062 to −0.025), as were
several other measures of physical activity, namely the frequency
of stair climbing and the usual walking pace. Unlike PC1, PC2
decreased the time spent using the computer in favor of time
spent watching TV.

PC3 increased alcohol intake frequency (b= 0.046, 95% CI:
0.028– 0.065) and napping during the day (b= 0.035, 95% CI:
0.018–0.053) (Fig. 5, Supplementary Data 13).

PC4 only associated with an increased length of the working
week (b= 0.043, 95% CI: 0.024–0.062) (Supplementary Data 13).

The effects of BMI on lifestyle were most similar to those of
PC2, linked to decreased SES (Townsend deprivation index
b= 0.078, 95% CI 0.058–0.099) and physical activity while
increasing smoking and alcohol consumption. Additional com-
parisons of overall effects on lifestyle can be seen in Supplemen-
tary Figs. 26–46.

Effects on diet. PC1 was associated with greater reported varia-
tion in diet (b= 0.052, 95% CI: 0.034–0.069) and increased
consumption of healthy foods such as fresh fruit, vegetables, and
water (Supplementary Data 14). Consumption of coffee was also
increased (b= 0.087, 95% CI: 0.068–0.11).

PC2 was similarly associated with reportedly increased
variation in diet (b= 0.084, 95% CI: 0.065–0.10), as well as salt
added to food (b= 0.045, 95% CI: 0.026–0.064). Other changes in
diet reflect increased consumption of cheaper meats, namely pork
and poultry, while decreasing intake of grain products (bread and
cereal), cheese, and dried fruits (Supplementary Data 14).

PC3 was associated with increased bread consumption
(b= 0.035, 95% CI: 0.017–0.053).

PC4 increased fruit intake, both fresh and dried (b > 0.041),
while decreasing processed meat intake (Supplementary Data 14).

Effects of BMI on diet were similar to those of PC2, such as
increased variation in diet (b= 0.12, 95% CI: 0.097–0.14) and
decreased intake of grain products and cheese (Supplementary
Data 14). In addition, some effects were similar to those of PC1,
including increased vegetable and fruit consumption, as well as
coffee intake (b= 0.11, 95% CI: 0.080–0.13).

Sex-specific effects. The genetic effects of the selected IVs on PCs
1, 2, and 4, as well as BMI and weight, were not significantly
different between men and women, which made it possible to
obtain unbiased sex-specific causal effects (see “Methods”).
Briefly, if the IV effects on the exposure do not differ between
sexes, summary statistics for the opposite sex can be used for the
exposure while using those of the sex of interest as outcome.
Those of PC3 (and WHR) were stronger in women (pPC3= 6.9
× 10−46, pWHR= 1.4 × 10−159) and were unsuitable for this
purpose. Full results are available in Supplementary Data 15–22
and shown in Supplementary Note 5.

None of the PCs had significantly different effects on diet and
lifestyle in men and women, though PC2 did have a tendency for
stronger effects on disease risk in men (TLS slope = 1.27), mainly
driven by diabetes (bm= 0.15, 95% CI 0.12–0.17; bf= 0.080, 95%
CI 0.052–0.11; pdiff= 1.8 × 10−3) and heart diseases such as IHD
(bm= 0.11, 95% CI 0.081–0.013; bf= 0.059, 95% CI 0.037–0.08;
pdiff= 4.7 × 10−3). However, many blood molecular traits and
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other continuous health outcomes were differently affected by
PCs in men and women.

Testosterone in particular was differently affected between sexes,
strongly decreased in men by both PC1 (b=−0.15, 95% CI −0.18
to−0.12) and PC2 (b=−0.18, 95% CI−0.21 to−0.14), whereas in
women it was unaffected by PC1 and increased by PC2 (b= 0.082,
95% CI 0.05–0.11). SHBG was similarly affected by PC2 in both
sexes, but the decrease caused by PC1 was twice as strong in women
(bm=−0.084, 95% CI −0.12 to −0.051; bf=−0.17, 95% CI −0.21
to −0.14; pdiff= 1.5 × 10−4).

Other differences include PC1 causing a stronger decrease in
albumin in women (bm=−0.095, 95% CI −0.12 to −0.068;
bf=−0.17, 95% CI −0.20 to −0.15; pdiff= 6.0 × 10−5) and
increasing glycated hemoglobin only in men (b= 0.12, 95% CI
0.089–0.15). The effects of PC2 in men were stronger for ALT,
GGT, and pulse rate, and an increase in total protein was only
seen in men.

The effects of BMI were again similar to those of PCs 1 and 2.
The increase in glycated hemoglobin was also stronger in men
and was accompanied a larger increase in glucose as well
(bm= 0.16, 95% CI 0.13–0.20; bf= 0.083, 95% CI 0.05–0.12;
pdiff= 5.2 ∗ 10−4). LDL was decreased only in men (b=−0.099,
95% CI −0.13 to −0.067). The opposite effects on testosterone
levels were also observed for BMI (bm=−0.24, 95% CI −0.27 to
−0.21; bf= 0.072, 95% CI 0.035–0.11; pdiff= 7.9 × 10−36).

Bi-directional MR. In addition to determining which environ-
mental factors may affect body shape, we were interested in
feedback loops. The stringency of the selection criteria for IVs,
namely that they be GWS for the sex used as exposure, resulted in
few exposures significantly affecting the body traits or PCs. Sev-
eral exposures had unrealistically large estimated effect sizes
(>0.4), likely due to confounding, and are not considered here.
For example, forced vital capacity (FVC), which is dependent on
lung—and therefore body—size, showed strong bi-directional
associations with most body traits. The main results are sum-
marized here, full results are listed in Supplementary Data 23–26.

While PC1 reduced cholesterol, it was in turn reduced by
LDL and total cholesterol (b ≤−0.068), as well as apolipo-
protein A and diagnosis of hypercholesterolemia. PC1 also
showed a positive feedback loop with cystatin C but a negative
one with IGF-1, reducing IGF-1 levels in the blood (b=−0.13,
95% CI: −0.16 to −0.11) but being increased by it (b= 0.042,
95% CI: 0.024–0.061).

PC2 showed a positive feedback loop with CRP and mutual
negative loop with creatinine. PC2 was also reduced by IGF-1
(b=−0.071, 95% CI: −0.089 to −0.052).

PC3 was decreased by hypertension (b=−0.07, 95% CI: −0.11
to −0.035), forming a negative feedback loop. It also formed a
positive feedback loop with diabetes (as did WHR), although this
seems to be due to a negative effect of diabetes on hip
circumference (HC, b=−0.16, 95% CI: −0.26 to −0.067) rather
than an increase in waist circumference (WC). PC3 also had a
positive feedback loop with triglycerides (from decreased HC),
and mutual negative effects on apolipoprotein A and HDL
cholesterol (from decreased WC). We also found the negative
effects of PC3 on testosterone and SHBG to be reciprocal
(b ≤−0.058).

PC4 had a positive feedback loop with creatinine and was also
increased by IGF-1 (b= 0.12, 95% CI: 0.11–0.14). SHBG and
testosterone both decreased PC4, though for testosterone this
appears to have been driven by an effect in women only
(b=−0.09, 95% CI: −0.11 to −0.065).

BMI increased CRP in a positive feedback loop, similar to that
of PC2, and reciprocal negative effects with LDL and total
cholesterol (b ≤−0.035), similar to PC1.

DXA-based measures. DXA and MRI technologies provide
increased accuracy in measurements of body composition and
have been suggested to provide a clearer picture of obesity and its
consequences on health24. We were able to impute many such
traits based on the subset of ~5000 UK Biobank participants with
these phenotypes (Supplementary Data 27). Several of these,
including both trunk and android tissue fat percentages (both

Fig. 5 Single and composite traits affect many aspects of lifestyle.Mendelian randomization causal effects of traits and principal components (PCs) on a
selection of lifestyle factors on a standardized scale. The 95% confidence interval of the effect is indicated in brackets. Effects that were not significant at
the Bonferroni-corrected threshold (p < 7.1 × 10−5) are colored in white. The full list of effects can be found in Supplementary Data 13.
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predicted with r2 above 0.75), had effects on disease comparable
to BMI and PC2 (correlation r ≥ 0.97) but with a tendency for
slightly larger effects (TLS slopes of 1.17 and 1.16, respectively).
However, with fewer GWS SNPs (~28% fewer than BMI), these
phenotypes revealed no additional diseases affected by obesity
(see Supplementary Data 28).

Prediction of disease risk. To further emphasize the biological
relevance of PCs over single traits, we compared the accuracy of
prediction of obesity-related disease, namely diabetes, high cho-
lesterol, and hypertension, in the UK Biobank. Given the inde-
pendence of estimated PC effects, these could be combined in a
weighted linear fashion to obtain the 4-PC prediction and were
compared with the single trait prediction from BMI and WHR
using receiver operating characteristic (ROC) curves, in a sub-
sample of the UK Biobank similar to that used by the Neale lab.

As expected, both BMI and WHR were effective in predicting
these obesity-related diseases, as indicated by areas under the
ROC curve (AUC) ranging from 0.62 to 0.74 “within-sample.”
BMI was more accurate in predicting hypertension (0.66 vs. 0.64,
p= 1.3 × 10−72), while WHR was more accurate for high
cholesterol (0.65 vs. 0.62, p= 4.9 × 10−101) and slightly more
for diabetes (0.74 vs. 0.73, p= 3.0 × 10−5). In all cases, the PC-
based predictors significantly outperformed both BMI and WHR
with AUCs of 0.68 for hypertension, 0.67 for high cholesterol, and
0.78 for diabetes (all p < 2.3 × 10−183, Supplementary Figs. 67–68,
Supplementary Data 29).

To explore the transferability of PCs, we replicated these results
out-of-sample in 76,756 non-”white British” UK Biobank partici-
pants, who had therefore been excluded from the original summary
statistics. Despite the considerable potential for disparities between
these samples, the AUCs for high cholesterol and hypertension were
almost exactly identical to those obtained above (Fig. 6, Supplemen-
tary Fig. 69, Supplementary Data 29), with PC-based predictors
significantly outperforming either trait (p ≤ 2.0 × 10−43). The
accuracy of PCs and BMI in predicting diabetes out-of-sample
decreased to 0.75 and 0.68, respectively, and although WHR was no
less accurate out-of-sample (AUC= 0.74) it remained less accurate
than PCs (p= 5.1 × 10−11).

We also tested whether a weighted linear combination of BMI
and WHR (analogous to that of the 4-PC predictor) would
improve the prediction, and found that in most (5 out of 6) cases
the AUC of the combined predictor performed worse than the
better of the two traits alone. In all cases, this predictor did not
exceed the accuracy of the PCs (p < 3.1 × 10−12). This is likely due
to the fact that these risk factors are not independent and hence
their conferred risk is not simply additive.

Discussion
By combining multiple traits through PCA, we found that more
than 99% of genetically determined variation in body shape and
size (as defined by the 14 selected traits) can be summarized using
four PCs affecting (1) body size, (2) adiposity, (3) predisposition
to abdominal fat deposition, and (4) lean mass. PCs 1–3 showed
some similarity with weight, BMI, and WHR, respectively, and
the latter two especially have been widely studied in the context of
obesity. However, these traits are highly correlated and partially
redundant, making it difficult to understand their individual
contributions to health outcomes, whereas PCs are orthogonal by
design and their effects additive. The PCs obtained here also share
some similarities with the average PCs (avPCs) obtained by Ried
et al.11 by meta-analyzing PCs from individual-level phenotypic
data. Specifically, avPC1 increased all body measures (though the
impact of height was weaker than for PC1); avPC2 showed
opposing directions for height and BMI/WHR (though WHR had
much more importance than BMI); avPC3 was dominated by
WHR (however both height and BMI contributed as well); and
loadings for avPC4 showed an increase in weight and BMI despite
decreased waist and hip circumference, suggesting increased
density of body mass and consistent with decreased body fat
percentage. The robustness of the obtained PCs to changes in the
trait selection or the use of male- or female-specific data supports
the hypothesis that these represent true biological mechanisms
underlying the shared variance across these anthropometric traits.
Furthermore, the molecular basis of PCs 3 and 4 in particular
appear to be more homogenous, as shown by enrichment for
genes expressed in many tissues, such as SAT and VAT but also
in the digestive, reproductive, and vascular systems, which were

Fig. 6 Principal components (PCs) improve prediction of obesity-related diseases out-of-population. Receiver operating characteristic (ROC) curves for
PC-, BMI-, and WHR-based prediction of diabetes, hypercholesterolemia, and hypertension out-of-sample/-population. The indicated p-values for the
difference between the PC- and single trait-based curves were obtained using the DeLong method. AUC area under the curve.
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not picked up by individual traits. This is also reflected in the
much broader spectrum of pathways enriched only for these PCs.

Leveraging the orthogonality of PCs, we can dissect the etiol-
ogy of obesity-related health and lifestyle consequences by com-
paring the effects of different PCs. Both PCs 1 and 2 embody the
excessive accumulation of body mass and their enrichment for
genes expressed in the brain and involved in neuronal signaling is
consistent with findings from BMI25 suggesting that behavioral
changes are likely one of the major factors underpinning heritable
susceptibility to obesity (reviewed in ref. 26). Shared effects
between PC1 and PC2 highlight diseases whose etiology involves
elements common to both, such as metabolic overexertion in the
case of diabetes27 or the physical burden of a larger body in the
case of arthrosis28. Differences between their effects can provide
insight into disease etiology which single traits cannot. For
example, Hyppönen et al.29 performed a phenome-wide MR
analysis to assess the effects of BMI on a number of diseases and
found that BMI increased the risk of IHD, cardiac ar-/dys-
rhythmia, and diseases of the veins (phlebitis and thrombophle-
bitis), among others. However, our results show that these do not
all arise through the same mechanisms, IHD being increased by
PCs 2 and 3 but not PC1, consistent with the predominant role of
adipose tissue-related dyslipidemia in this disease8, whereas car-
diac arrhythmia and diseases of the veins were only increased by
PC1. BMI is also a known risk factor for prolapsed disc30, though
it is unknown whether this occurs due to mechanical over-
straining, dysregulation of the metabolic and immune systems, or
a combination of these31. That PC1 alone increased the risk of
prolapsed disc strongly supports the role of mechanical stress
over any form of lipotoxicity.

The decreased SES associated with PC2 is consistent with what
has been reported for BMI32,33, although recent results suggest
that this is due to residual population stratification and non-
genetic familial effects34,35. Many other differences in lifestyle can
be considered as concurrent with this change in SES (e.g., reduced
education and income) whereas others are likely secondary to
these (e.g., alcohol taken outside of meals36 and increased con-
sumption of cheaper meats). Despite a moderate association with
lower SES, PC1 was not associated with any of these secondary/
concurrent changes, though the increased time spent using a
computer may be indicative of white-collar occupations rather
than the physical jobs associated with PC2. The similarity of the
effects of both PCs on smoking and alcohol consumption suggests
mechanisms independent of SES. For example, increased smoking
may reflect the use of smoking as a strategy for weight loss,
leveraging the appetite suppressant effects of nicotine37, and is
consistent with the observational correlation found between the
number of cigarettes smoked and the risk of obesity38. Although
we cannot exclude residual population stratification, the increased
alcohol consumption found for both PC1 and PC2 suggests a
directionality of causal effects which is rarely considered, as
obesity is typically viewed as a consequence of alcohol con-
sumption rather than the cause39. The lack of robust genetic
instruments to explore the distinct effect of different alcoholic
beverages render MR analysis suboptimal to resolve such reverse
causations. The increased variation in diet and salt added to food
may reflect a greater desire for palatable foods, possibly due to
altered or reduced activation of the reward system which has been
shown to occur in obese individuals (reviewed in ref. 40). The
healthy aspects of the dietary shift from PC1, e.g., greater con-
sumption of fruits and vegetables, could possibly represent
attempts to eat healthier, however, this is likely to be highly
confounded by biased reporting41. The weak to non-existent
effects of cholesterol and other health risks or diseases on these
measures of body size suggests that any lifestyle changes upon

disease diagnosis are generally minimal and likely insufficient to
have a real impact.

PC3, i.e., predisposition to abdominal fat deposition, was of
particular interest as a hypothesis-free emergent component
affecting body shape while remaining independent of its size or
composition. This is in contrast to WHR which is highly corre-
lated with BMI and body fat percentage, particularly in men42.
The increased waist circumference at the expense of that of the
hips suggests a change in body fat distribution, with a shift from
subcutaneous (contributing to both hips and waist) to VAT
(contributing to waist alone). This is supported by the enrichment
for terms related to energy homeostasis and adipose tissue
function, similar to those previously reported for WHR adjusted
for BMI43, and the impacts on health which appear specific to
lipotoxicity and are similar to what has been found for genetic
variants affecting subcutaneous-to-visceral adipose tissue
ratio12,13. The implication of genes expressed in adipose tissues,
particularly subcutaneous, is in line with the hypothesis that
adipose tissue function, in particular its expandability, may be a
critical factor in determining the distribution and impact of
excess adiposity7 and its study may provide pharmaceutical
avenues which may reduce health risks associated with obesity.
The enrichment of both PCs 3 and 4 (as well as WHR) for genes
expressed in several tissues of the digestive tract is not entirely
surprising44, however, their strong enrichment for all female-
specific tissues tested was unexpected. It is possible that these
tissues, and the genes expressed therein or associated sexual
hormones, contribute to this phenotype, which could explain the
increased variance of PC3 (and more generally WHR) observed
in women compared to men. Additional studies will be required
to determine how these genes and tissues are involved in the
regulation of body fat distribution.

The additivity implied by the independence of the PCs’ causal
effects provides a straightforward estimation of disease risk
through linear combination, which proved more accurate than
single trait-based prediction. Although causal effects are not
ideally suited for within-sample outcome prediction, since they
do not take advantage of non-causal correlates, their basis in
causality proved reliable even out-of-population. The reason for
the drop in accuracy seen for out-of-population PC- and BMI-
based prediction of diabetes is unclear, though a number of fac-
tors may contribute, such as ethnicity-dependent differences in
susceptibility, lifestyle, or ascertainment bias45, which exceed the
scope of this study.

The systematic application of MR over a broad range of phe-
notypes carries the risk of violating its assumptions. Despite the
steps taken to avoid any such violations or mitigate their impact,
some sources of bias may remain inherent to the methods
employed. GWAS effect estimates themselves have been shown to
be biased due to population effects, such as parental effects,
population stratification, and assortative mating46. Although such
biases may be present in the exposure, they would only bias MR
estimates if they affect the outcome in a similar fashion34,35,
which is difficult to test in a real setting. This study is also subject
to other limitations of the MR approach, such as the estimated
univariable causal effects summarizing the consequences of a
lifetime exposure of a difference in phenotype at the population
level. For example, the effect of 1 SD difference in weight (~14 kg)
in the population is not equivalent to a sole gain/loss of 14 kg,
since this difference in the population distribution will be
accompanied by a difference in average height as well (as illu-
strated by PC1 loadings). The causal effect being modeled line-
arly, it also averages what may be different effects in different
strata of the population, i.e. if the causal effect is non-linear. For
example, the effects of BMI on all cause mortality have been
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shown to be non-linear47, although the linearity of effects on
specific diseases such as diabetes remains unclear48. In the case of
non-linear effects, the MR causal effect estimates can be inter-
preted as an average effect at the population mean.

In summary, we established a scale-preserving method for the
linear combination of traits at the summary-statistics level,
mimicking a GWAS performed on a standardized composite trait
but circumventing the need for individual-level data. Further-
more, this allows the combination of traits across different
cohorts, since the covariance of effect size estimates between
different traits can be estimated from summary statistics via
cross-trait LD score regression intercept49. We also showed that
cross-sex MR can reduce the bias by avoiding sample overlap,
while preserving much of the statistical power from a potential
one-sample MR using the full sample, still relying only on pub-
licly available summary statistics. Applying these to the PCs of
anthropometric traits, body size, adiposity, abdominal fat dis-
tribution, and lean mass, we showed that their distinct effects on
health- and lifestyle-related outcomes can aid in understanding
the etiology of the consequences of obesity. These components
can be visualized and their effects on hundreds of outcomes
compared through the shiny app which can be downloaded fol-
lowing the instructions at http://wp.unil.ch/sgg/pca-mr/. Finally,
we showed their effectiveness in predicting obesity-related dis-
eases, confirming the additivity of the conferred risks and
emphasizing their relevance to disease etiology. Although we
identified four PCs here, larger sample sizes or more detailed
anthropometric traits may achieve a finer scale identification of
obesity subtypes.

Methods
Data and phenotype selection. We used GWAS summary statistics data derived
from the UK Biobank16, a cohort of ~500,000 participants aged 37–73 (median 58),
recruited between 2006 and 2010. UK Biobank obtained ethics approval from the
North West Multi-centre Research Ethics Committee (MREC) and obtained
informed consent from all participants. Phenome-wide GWAS in UK Biobank data
were performed and the summary statistics made available by the Neale Lab
(http://www.nealelab.is/uk-biobank) for three different sex groups: men, women,
and both sexes combined. This includes effect estimates for 13.7 million SNPs
which were tested for association with 4203 unique phenotypes across 361,194
unrelated, white British individuals (167,020 men, 194,174 women). All were
adjusted for age, age2, sex, age ∗ sex, age2 ∗ sex, and the top 20 genetic PCs to
correct for population stratification. We excluded SNPs from the HLA region
(chr6: 28,477,797–33,448,354, www.ncbi.nlm.nih.gov/grc/human/regions/MHC?
asm=GRCh37). For continuous phenotypes, we used effect estimates for the
inverse rank-normalized trait. Summary statistics for WHR were calculated in the
UK Biobank across a similar sample of 378,139 unrelated, white British individuals
(175,155 men, 202,984 women) and correcting for the same covariates after inverse
rank-normalization. For binary traits, we divided the effect estimates and standard
errors by the square root of the variance of the trait (that of the analyzed sample
where provided, otherwise across a similar subset of the UK Biobank). As such, all
effects are expressed on the SD scale and comparable with continuous traits. The
linear models used to estimate the SNP-binary trait association provide well-
calibrated p-values, as long as rare SNPs (MAF < 0.1%) are not evaluated for a trait
with a highly imbalanced case fraction (<10%) or as long as the product of MAF
and disease prevalence exceeds 0.000150. Since we analyzed diseases only with >1%
prevalence, any SNPs with MAF > 1% are safe to use as instruments. The largest
fraction of low-frequency (MAF < 1%) IVs were observed for height (88/1704
SNPs, i.e., 5.2% vs. max 2.8% for other traits/PCs) and the lowest disease prevalence
were between 1 and 2%. Still the resulting causal effects from MR analysis between
height and these diseases did not change appreciably upon the exclusion of IVs
below 1% MAF (Supplementary Note 7).

In total, 232 phenotypes that had at least one GWS SNP (p < 5 × 10−8) were
divided into five mutually exclusive categories: body measures (14 phenotypes),
continuous measures of health (37 phenotypes), dietary habits (19 phenotypes),
diseases (108 phenotypes), and lifestyle factors (54 phenotypes), which are briefly
described below. The full list of selected phenotypes can be found in
Supplementary Data 1.

Body measures included BMI, height, weight, hip and waist circumference, and
WHR, as well as bioimpedance-derived fat and lean mass estimates in arms, legs,
trunk, and overall body fat percentage. For arms and legs, summary statistics were
available for left and right sides. As these were almost identical, the statistics for the
left side alone were used. Basal metabolic rate was also included in body
measurements as it is derived from bioimpedance measures.

Continuous health outcomes included the biomarker panel of the UK Biobank,
including 34 biomarkers measured in either blood or urine, as well as systolic and
diastolic blood pressure (BP), heart rate at rest and during effort, and FVC.

Dietary habits were obtained from a food frequency questionnaire (FFQ). UK
Biobank also includes more specific questions such as 24-h recall (food consumed
on the last day) which is more reliable but less representative, as well as specific
questions such as the type of bread or milk typically consumed, however, these
were not included in the present analysis.

Disease summary statistics in the UK Biobank were available for self-reported
disease status, ICD-10-classified hospital diagnoses, and diseases curated by the
Neale Lab in collaboration with the FinnGen consortium (www.finngen.fi). We
included data from both self-reported answers and the FinnGen curated diseases,
excluding the raw ICD10 diagnoses which were considered less informative. We
included any diseases which had a prevalence of at least 1% in the analyzed sample.

Lifestyle included both environmental factors and lifestyle choices, mainly
relating to physical activity, alcohol consumption, smoking, sleep, work, and SES.

We restricted SNPs to those in common between the summary statistics from
Neale and the UK10K reference panel used for LD pruning. We also removed SNPs
with a minor allele frequency below 0.001, resulting in 9,675,947 SNPs. For each
trait, SNPs were pruned separately using plink v1.90b6 with the UK10K European
LD panel to obtain independent MR instruments. SNPs were considered
independent if separated by more than 10Mb or the linkage disequilibrium was
r2 < 0.01.

High-accuracy body composition measurements. In addition to bioimpedance
measurements, the UK Biobank provides other body composition phenotypes
derived from more accurate methods, namely DXA and MRI. Unfortunately, the
sample sizes for these phenotypes were too low (~5000 individuals) for their
inclusion as body phenotypes in the PCA. We did, however, investigate whether
approximating these traits through linear combination of other available traits
(with regression weights calculated in the UK Biobank) could provide a hypothesis-
driven alternative to the hypothesis-free PCA approach. We were able to estimate
57 body composition measurements using the same 14 anthropometric and
bioimpedance-based traits with varying accuracy (see Supplementary Data 27). 18
out of 57 had an r2 above 80%, including abdominal SAT, and another 18 had r2

above 70%, including VAT. Others, such as bone mass and liver fat percentage
could not be accurately approximated using the included traits.

Principal component analysis. PCA was performed on a matrix of effect estimates
of independent SNPs on the 14 body traits described above. We selected all SNPs
with a GWS effect (p < 5 × 10−8) on at least one of the body traits and pruned them
using the same procedure as for single traits (distance > 10Mb or r2 < 0.01). SNPs
were prioritized according to the highest rank within any significantly associated
trait, i.e., for each trait, all SNPs significantly associated with it were ranked by p-
value; then each SNP has attributed a priority based on the highest rank obtained
with any significantly associated trait. This was done to avoid the well-powered
traits (e.g., height) overshadowing other traits and driving the SNP selection. Any
missing effect estimates in the resulting matrix were set to 0. Data were neither
centered nor scaled prior to the PCA, as the effect estimates were standardized and
should therefore have zero mean and their variance for a given trait is informative
(distantly related to trait heritability).

PCA was then performed on the resulting matrix of genetic effects to obtain the
PC loadings, which were then used to calculate SNP-PC associations across the
entire genome. These were then individually pruned to obtain the final set of SNPs
for each PC.

Although the SNP-phenotype associations are standardized (effects are on an
SD/SD scale), a linear combination of effects would yield non-standard effects since
the resulting traits do not have a variance of 1. To maintain comparable effects
between PCs and traits, the PC loadings should be scaled such that the resulting βs
would represent SNP effects on composite traits with unit variance, which would
typically involve performing the rotation on the phenotypes, standardizing, and
rerunning a GWAS on the resulting composite trait with variance 1. Instead, we
can consider the linear regression coefficients for trait j calculated as:

β̂j ¼ ðGTGÞ�1
GTyj; ð1Þ

where yj is the vector of values for trait j and G is the genotype matrix, and a
weighted sum of n variables:

yC ¼ w1y1 þ :::þ wnyn; ð2Þ
where wj is the weight for trait j. The effect size for the composite trait can then be
calculated as:

β̂C ¼ ðGTGÞ�1GTyC ¼ ðGTGÞ�1GT ðw1y1 þ :::þ wnynÞ ¼ w1β̂1 þ :::þ wnβ̂n;

ð3Þ
The expected variance of variable yC can be written as51

VarðyCÞ ¼ wTKw; ð4Þ
where K is the covariance matrix of the n traits composing yC, which in the case of
standardized trait variables, is the correlation matrix. Knowing the variance of the
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composite trait, we can simply rescale the vector of weights such that the expected
variance in the composite output variable yC is equal to one, resulting in
standardized effect sizes. Applying this to the PC loadings, we rescaled the weights
as follows:

vi ¼
wi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wT
i Kwi

p ; ð5Þ

where wi and vi are the unadjusted and adjusted (trait) loading vectors for PC i,
respectively, and K is the pairwise phenotypic correlation matrix of body trait
phenotypes, which was calculated on a subset of the UK Biobank similar to that
used for the summary statistics (i.e. unrelated white British individuals) and the
phenotypes were corrected for the same covariates as used by the Neale lab prior to
calculating the correlation. The effect estimates were then calculated using these
adjusted loadings, i.e.

β̂i ¼ B̂ � vi; ð6Þ

where B̂ is the matrix of genetic effects on the 14 anthropometric traits. The
corresponding standard errors were calculated following the formula for a weighted
sum of random variables51:

σ̂2i;j ¼ wT
i � Σj � K � Σj � wi; ð7Þ

where σ̂ i;j is the standard error for the association of SNP j with PC i and Σj is a
diagonal matrix with the standard error of the association of SNP j with each trait.
Since we use only UK Biobank summary statistics, the correlation between effect
estimates simplifies to the phenotypic correlation between the traits. The advantage
of this approach is that we do not need to calculate the composite trait and run a
GWAS but can directly compute the association summary statistics.

Tissue specificity and pathway enrichment. We tested PC- and trait-associated
SNPs for the enrichment of tissue-specific genes using the MAGMA tool for gene
set analysis17 through the FUMA v 1.3.5e interface18 using the default parameters,
with a Bonferroni-adjusted p-value threshold. We used gene expression data in 54
tissues from GTEx v819 as well as brain development and age data from
BrainSpan20.

We used the molecular pathway gene sets defined by DEPICT21 and tested for
enrichment using PASCAL22. As with most gene-based pathway enrichment
methods, we assume that most regulatory variants for a given gene are in close
(50 kb) physical proximity to the gene body52, hence we may ignore more distant
regulatory variants.

Mendelian randomization. We used IVW MR to estimate causal effects of body
traits and PCs on all non-body traits, as well as the reverse. MR mimics a ran-
domized controlled trial (RCT) where the treatment corresponds to the random
allocation of an exposure-associated allele, called an instrumental variable (IV)53.
MR relies on three key assumptions to infer causality: (1) the IV is associated with a
change in the exposure; (2) the IV is independent of the outcome, except through
its association with the exposure; (3) the IV is independent of any confounders of
the exposure-outcome association. If these assumptions are verified, MR provides
an unbiased estimate of the causal effect of the exposure on the outcome and can be
done using summary statistics data alone. We used IVW MR as the default method
for all our analyses, but we compared IVW causal effect estimates to those obtained
from weighted median-based MR to ensure robustness.

Cross-sex MR. In our case, the use of summary data from the UK Biobank for
both the exposure and outcome effect sizes (i.e., full sample overlap) would lead to
a bias in MR causal effect estimate in the direction of the observed correlation of
the phenotypes54. To circumvent this, we used the existing summary statistics for
two non-overlapping samples from the Neale Lab, those for men and women
separately. Each sex was used as exposure on the other as outcome and then both
causal effect estimates were meta-analyzed (using inverse variance weighting). This
removed the correlation between the error terms of the effect estimates of IVs on
exposure and outcome, considerably reducing the bias from sample overlap, while
minimizing loss of power. This would lead to a slight bias away from zero even
when there is no true difference in the genetic effects on the exposure in men and
women, given that:

α �
βm=βf þ βf =βm

2

�

�

�

�

�

�

�

�

≥ αj j; ð8Þ

where α is the common causal effect (for men and women), βm and βf are the
coefficients of association for a given IV with the exposure for men and women,
respectively. This bias increases if there is a difference between sexes in the strength
of association with the exposure, but its magnitude remains small. For example, if
the SNP effects on the exposure were consistently 1.37 times stronger in one sex,
the relative theoretical bias would only be 5%. In practice, however, the IVs were
filtered for genome-wide significance in each sex prior to being used as exposure,
resulting in fewer IVs being selected in the sex with weaker effects (on the expo-
sure). This reduced the power and increased the variance in the overestimated
causal effect, which was correspondingly down-weighted by the IVW meta-

analysis. For example, we found PC3 to have a strong sex-specificity, with effects on
exposure tending to be ~2.2 times stronger in women, which would theoretically
lead to a 34% bias away from the null. However, this yielded 242 GWS IVs in
women but only 33 in men. This increased the variance in the male
exposure–female outcome causal effect estimate by a median of 6.8-fold, resulting
in a corresponding down-weighting of the overestimated causal effect. In this
example, we expect a meta-analyzed estimate which is biased towards the null by
~32% (since the IVW causal effect estimate is expected to be (((6.1/7.1) ∗ (1/1.7) +
(1/7.1) ∗ 1.7) ∗ α= 0.68 ∗ α). Importantly, since the bias is multiplicative, this
introduces no bias in the absence of causal effect, indicating it will not affect the
type I error rate. In practice, the causal effect estimates from cross-sex MR were
closer to those obtained from a two-sample setting, whereas the standard IVW MR
effect estimates were generally overestimated (see Supplementary Notes 8–9).

Although the PCs were constructed using combined-sex summary statistics, the
selected IVs were filtered for genome-wide significance in the sex-specific summary
statistics prior to MR analysis to avoid weak instrument bias inflating causal effect
estimates. This may slightly exacerbate Winner’s curse, inflating the SNP-exposure
association, which would result in a small bias towards the null. In the presence of a
true causal effect, however, the SNP-outcome association (being assessed in the
same sample) may be proportionally increased, which would mitigate this bias.
Such biases are difficult to correct for without using three independent samples.

For each sex, the GWS IVs associated with the exposure formed the initial set of
IVs. Those with significantly larger effects on the outcome than on the exposure
were removed, as these would indicate a violation of MR assumptions (likely
reverse causality and/or confounding). The effect sizes being on a standardized
scale, they were compared directly using a one-sided t-test and removed if the
magnitude of the effects in the outcome were significantly greater (p < 0.05). To
avoid unreliable causal effect estimates, MR was only performed if at least 10 IVs
remained. This was done using the TwoSampleMR R package v0.5.455.

The MR causal effect estimates from individual IVs were tested for
heterogeneity using Cochran’s Q test:

Qi ¼
ðβiout � βMR � βiexp Þ

2

σ2iout þ β2iexp � σ2MR þ β2MR � σ2iexp þ σ2MR � σ2iexp
; ð9Þ

where βiexp and βiout are the coefficients of association of SNP i with the exposure
and outcome, respectively, with σiexp and σiout the corresponding standard errors,
and βMR and σMR are the MR estimate and standard error of the causal effect of the
exposure on the outcome. The test statistic Qi follows a χ2 distribution with 1
degree of freedom. If any of the IVs used had an associated p < 10−3, the most
heterogeneous one (with the lowest p-value) was removed. If at least 5 IVs
remained, the MR was then repeated with the remaining IVs. In practice, few SNPs
were filtered as outliers (on average <1%), though we also explored alternative
methods for dealing with heterogeneity, namely performing no filtering, using
weighted median MR with or without filtering, or using exact Q statistics56 instead
of Cochran’s Q (see Supplementary Note 10). All of these produced similar effect
estimates, though those from weighted median MR tended to be ~6% lower and
lacked the statistical power to find many effects.

Due to the standardized scales of IV effect estimates, the resulting causal effects
are on a scale representing the SD change in the outcome for a change of 1 SD in
the exposure.

To account for multiple testing, we adjusted the p-value threshold with
Bonferroni correction for the number of tests within the exposure-outcome
category pair. For example, the p-value threshold for the effect of BMI (body
phenotype) on type 2 diabetes (disease) is 0.05/(number of body phenotypes ∗
number of diseases).

Although the forward MR analyses using anthropometric traits (whether
individual or composite) as exposures were well-powered to find many
associations, the reverse/bi-directional MR analyses often lacked sufficient GWS
IVs. This can be seen in Supplementary Data 30, showing the total explained
variance by all GWS SNPs for each phenotype in each sex group. Only continuous
health outcomes had IVs with a reasonably large (combined) contribution to the
phenotypic variance. Those of phenotypes from other categories explained at most
3.5% in the combined-sex group (hypertension), though frequently much less,
which was further reduced by the restriction for genome-wide significance within
the sex used as exposure (to a maximum explained variance of 2.4% for
hypothyroidism in women).

Sex-specific MR. The simplest method to test for sex-specific effects would be to
use sex-specific summary statistics for the sex of interest for both exposure and
outcome, however, this would bias results away from the null due to correlated
errors in the exposure and outcome. In most cases, we were instead able to obtain
unbiased causal effect estimates using the exposure summary statistics from the
opposite sex on those of the sex of interest in the outcome. This relies on the
strength of the association between the IVs and the exposure to be identical (or at
least not systematically different) between sexes. We tested this using both paired
Wilcoxon signed-rank test on the absolute genetic effects of the IVs and total least
squares (TLS) regression. Exposures with non-significant results for both tests were
considered identical in both sexes for this purpose and the summary statistics for
the opposite sex were used for the exposure.
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Using the GIANT consortium as a separate sample25, we were able to confirm
that the use of opposite-sex summary statistics for the exposure produced effect
estimates which were highly consistent with those using two-sample same-sex MR
(see Supplementary Note 11).

Comparison of causal effects. To test the significance of a difference in the effects
of two exposures on a given outcome, we used a two-sided Z-test57. We accounted
for multiple testing using Bonferroni correction, adjusting for the total number of
tests, i.e. the number of significant effects of either exposure on the category
outcomes. For example, to test whether the effects of BMI on type 2 diabetes were
different from those of WHR, the significance threshold would be 0.05/total
number of diseases significantly affected by either BMI or WHR.

In some cases, it was useful to compare the causal effects of two exposures on all
outcomes of a category (e.g., the effects of weight on disease risk compared to those
of PC1) or the same exposure in different experimental settings (comparison of
methods or sex-stratified analyses). In these cases, we obtained the slope estimate
using TLS regression with no intercept, which considers error in both axes rather
than ordinary least squares (OLS) which minimizes only the vertical offset. The
standard error on the angle of the regression line (rather than the slope, which is
not symmetrical and dependent on the phenotype placed on the y-axis) was
computed using a jackknife procedure, which was then used to compare the
obtained estimate with the null hypothesis that the true causal effects were identical
(i.e., an angle of 45° or a slope of 1). The TLS procedure was performed using the
deming R package v1.458.

Prediction of disease risk. The accuracy of disease prediction was assessed in-
sample in the UK Biobank across 371,523 unrelated, white British individuals
(199,699 women, 171,824 men) for diabetes, high cholesterol, and hypertension.
PCs were calculated based on the 14 scaled and centered anthropometric traits for
each individual. These were then combined in a disease-specific linear combination
based on the estimated causal effect on the disease. Rather than ignoring PCs with
non-significant effects, the effect estimates were IVW to account for the uncer-
tainty of the effect:

d ¼ ∑
4

i¼ 1

γipi
σ2i

; ð10Þ

where γi and σi are the estimated causal effect of PC i on the disease of interest and
its standard error, respectively, and pi is the individual’s phenotypic realization of
that PC. The combined predictor for BMI+WHR was obtained in an analogous
manner using the estimated effects of the respective traits on the outcome of
interest.

The accuracy of this predictor was assessed using ROC curves by comparing the
AUC with those of BMI and WHR. The significance of the difference between the
AUCs for each predictor was determined using DeLong’s test in the pROC R
package (version 1.16.2)59.

Out-of-sample prediction accuracy was assessed in a sample of 76,756 UK
Biobank participants (42,407 women, 34,349 men) who were not flagged as
“in.white.British.ancestry.subset” in the sample QC file. This includes individuals
who either did not self-report ‘white British’ or whose genetic ancestry (as
determined by the genomic PCs) was dissimilar from other white British
individuals. This sample thereby excluded all the individuals included in the
original analysis and any relatives in the UK Biobank. The phenotypes were scaled
according to the original distribution, i.e. the mean and SD of the original sample
were used to scale individuals without relying on the distribution in the second
sample. Using the values of the second distribution for scaling changed little (the
AUC increased by at most 4.4 × 10−4).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
UK Biobank summary statistics for WHR can be obtained at wp.unil.ch/sgg/pca-mr/, the
others were downloaded from www.nealelab.is/uk-biobank. The external validation
summary statistics were downloaded from https://portals.broadinstitute.org/
collaboration/giant/index.php/GIANT_consortium_data_files25. Cross-trait phenotypic
correlation and disease risk prediction were performed using data from the UK Biobank
(application #16389). L.D. was calculated based on the UK10K data resource
(EGAD00001000740, EGAD00001000741).

Code availability
The code for the shiny app and an example pipeline using this method (along with
required data files) can be obtained from wp.unil.ch/sgg/pca-mr/.
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