9 research outputs found

    The surface chemistry and interface engineering of lead sulphide colloidal quantum dots for photovoltaic applications

    No full text
    This thesis examines the effect of lead sulphide (PbS) CQDs’ surface chemistry and interfaces to their photovoltaic performance. Using PbS CQDs as the starting material, cation-exchange was utilised to form PbS/CdS core/shell CQDs, which were thoroughly characterised and the improved surface passivation was shown by increased photoluminescence yield and lifetime. The core/shell CQDs were incorporated into a ZnO/CQD heterojunction solar cell device and showed a substantial improvement of the mean open-circuit voltage (Voc), from 0.4 V to 0.6 V, over PbS reference devices. By optimising shell thickness and surface ligands, core/shell CQD devices with average device efficiency of 5.6 % were fabricated as compared to 3.0 % for unshelled PbS devices. The lower defect density due to better passivation confers lower carrier density in core/shell CQD film. To take advantage of low defect concentration and to aid charge extraction, a 3 dimensional quantum funnel concept was sought of by blending two populations of PbS/CdS CQDs of different sizes. By incorporating a blend component within a heterojunction device, even when the device thickness is beyond what is optimal for the depletion width and the diffusion length of the system, high Voc is still maintained. In a separate study, a p-i-n device strategy was examined, and with this approach, a maximum device efficiency of 6.4 % was achieved. Despite the improvements made to Voc by optimizing surface passivation, fill factors of the devices are low. By using poly(3-hexylthiophene-2,5-diyl) (P3HT) as a hole transport material (HTM), fill factor and the overall performance improved over a reference device without the HTM. Further studies showed that oxidation of the HTM material results in increased p-type characteristic, thus optimising hole transport. This beneficial oxidation process also makes the device air-stable. From this, devices of up to 8.1 % efficiency and devices with fill factor as high as 0.72 were fabricated.</p

    The surface chemistry and interface engineering of lead sulphide colloidal quantum dots for photovoltaic applications

    No full text
    This thesis examines the effect of lead sulphide (PbS) CQDsâ surface chemistry and interfaces to their photovoltaic performance. Using PbS CQDs as the starting material, cation-exchange was utilised to form PbS/CdS core/shell CQDs, which were thoroughly characterised and the improved surface passivation was shown by increased photoluminescence yield and lifetime. The core/shell CQDs were incorporated into a ZnO/CQD heterojunction solar cell device and showed a substantial improvement of the mean open-circuit voltage (Voc), from 0.4 V to 0.6 V, over PbS reference devices. By optimising shell thickness and surface ligands, core/shell CQD devices with average device efficiency of 5.6 % were fabricated as compared to 3.0 % for unshelled PbS devices. The lower defect density due to better passivation confers lower carrier density in core/shell CQD film. To take advantage of low defect concentration and to aid charge extraction, a 3 dimensional quantum funnel concept was sought of by blending two populations of PbS/CdS CQDs of different sizes. By incorporating a blend component within a heterojunction device, even when the device thickness is beyond what is optimal for the depletion width and the diffusion length of the system, high Voc is still maintained. In a separate study, a p-i-n device strategy was examined, and with this approach, a maximum device efficiency of 6.4 % was achieved. Despite the improvements made to Voc by optimizing surface passivation, fill factors of the devices are low. By using poly(3-hexylthiophene-2,5-diyl) (P3HT) as a hole transport material (HTM), fill factor and the overall performance improved over a reference device without the HTM. Further studies showed that oxidation of the HTM material results in increased p-type characteristic, thus optimising hole transport. This beneficial oxidation process also makes the device air-stable. From this, devices of up to 8.1 % efficiency and devices with fill factor as high as 0.72 were fabricated.</p

    Solution-processable integrated CMOS circuits based on colloidal CuInSe2 quantum dots

    No full text
    Designing efficient toxic-element-free technologies in solution-processable CMOS electronics remains a challenge. Here, the authors demonstrate integrated logic CMOS circuits based on heavy-metal-free colloidal CuInSe2 quantum dots with low switching voltages and with degradation-free performance on month-long time scales

    Solution-processable integrated CMOS circuits based on colloidal CuInSe2 quantum dots.

    No full text
    The emerging technology of colloidal quantum dot electronics provides an opportunity for combining the advantages of well-understood inorganic semiconductors with the chemical processability of molecular systems. So far, most research on quantum dot electronic devices has focused on materials based on Pb- and Cd chalcogenides. In addition to environmental concerns associated with the presence of toxic metals, these quantum dots are not well suited for applications in CMOS circuits due to difficulties in integrating complementary n- and p-channel&nbsp;transistors in a common quantum dot active layer. Here, we demonstrate that by&nbsp;using heavy-metal-free CuInSe2 quantum dots, we can address the problem of toxicity and simultaneously achieve straightforward integration of complimentary devices to prepare functional CMOS circuits. Specifically, utilizing the same spin-coated layer of CuInSe2 quantum dots, we realize both p- and n-channel transistors and demonstrate well-behaved integrated logic circuits with low switching voltages compatible with standard CMOS electronics

    Quantum funneling in blended multi-band gap core/shell colloidal quantum dot solar cells

    No full text
    Multi-band gap heterojunction solar cells fabricated from a blend of 1.2 eV and 1.4 eV PbS colloidal quantum dots (CQDs) show poor device performance due to non-radiative recombination. To overcome this, a CdS shell is epitaxially formed around the PbS core using cation exchange. From steady state and transient photoluminescence measurements, we understand the nature of charge transfer between these quantum dots. Photoluminescence decay lifetimes are much longer in the PbS/CdS core/shell blend compared to PbS only, explained by a reduction in non-radiative recombination resulting from CdS surface passivation. PbS/CdS heterojunction devices sustain a higher open-circuit voltage and lower reverse saturation current as compared to PbS-only devices, implying lower recombination rates. Further device performance enhancement is attained by modifying the composition profile of the CQD species in the absorbing layer resulting in a three dimensional quantum cascade structure

    Thermoelectric Silver‐Based Chalcogenides

    Get PDF
    Abstract Heat is abundantly available from various sources including solar irradiation, geothermal energy, industrial processes, automobile exhausts, and from the human body and other living beings. However, these heat sources are often overlooked despite their abundance, and their potential applications remain underdeveloped. In recent years, important progress has been made in the development of high‐performance thermoelectric materials, which have been extensively studied at medium and high temperatures, but less so at near room temperature. Silver‐based chalcogenides have gained much attention as near room temperature thermoelectric materials, and they are anticipated to catalyze tremendous growth in energy harvesting for advancing internet of things appliances, self‐powered wearable medical systems, and self‐powered wearable intelligent devices. This review encompasses the recent advancements of thermoelectric silver‐based chalcogenides including binary and multinary compounds, as well as their hybrids and composites. Emphasis is placed on strategic approaches which improve the value of the figure of merit for better thermoelectric performance at near room temperature via engineering material size, shape, composition, bandgap, etc. This review also describes the potential of thermoelectric materials for applications including self‐powering wearable devices created by different approaches. Lastly, the underlying challenges and perspectives on the future development of thermoelectric materials are discussed
    corecore