243 research outputs found

    Convolution of chemoattractant secretion rate, source density, and receptor desensitization direct diverse migration patterns in leukocytes

    Get PDF
    Chemoattractants regulate diverse immunological, developmental, and pathological processes, but how cell migration patterns are shaped by attractant production in tissues remains incompletely understood. Using computational modeling and chemokine-releasing microspheres (CRMs), cell-sized attractant-releasing beads, we analyzed leukocyte migration in physiologic gradients of CCL21or CCL19 produced by beads embedded in 3D collagen gels. Individual T-cells that migrated into contact with CRMs exhibited characteristic highly directional migration to attractant sources independent of their starting position in the gradient (and thus independent of initial gradient strength experienced) but the fraction of responding cells was highly sensitive to position in the gradient. These responses were consistent with modeling calculations assuming a threshold absolute difference in receptor occupancy across individual cells of [similar]10 receptors required to stimulate chemotaxis. In sustained gradients eliciting low receptor desensitization, attracted T-cells or dendritic cells swarmed around isolated CRMs for hours. With increasing CRM density, overlapping gradients and high attractant concentrations caused a transition from local swarming to transient “hopping” of cells bead to bead. Thus, diverse migration responses observed in vivo may be determined by chemoattractant source density and secretion rate, which govern receptor occupancy patterns in nearby cells.National Institutes of Health (U.S.) (NIH EB007280)Howard Hughes Medical Institute (Investigator

    Guiding Principles in the Design of Molecular Bioconjugates for Vaccine Applications

    Get PDF
    Antigen- and adjuvant-based bioconjugates that can stimulate the immune system play an important role in vaccine applications. Bioconjugates have demonstrated unique physicochemical and biological properties, enabling vaccines to be delivered to key immune cells, to target specific intracellular pathways, or to mimic immunogenic properties of natural pathogens. In this Review we highlight recent advances in such molecular immunomodulators, with an emphasis on the structure–function relationships that provide the foundation for rational design of safe and effective vaccines and immunotherapies.United States. National Institutes of Health (AI095109)United States. National Institutes of Health (AI091693)United States. National Institutes of Health (AI104715)Ragon Institute of MGH, MIT and HarvardDana-Farber Cancer Institute. Bridge Projec

    Enhancing cell therapies from the outside in: Cell surface engineering using synthetic nanomaterials

    Get PDF
    Therapeutic treatments based on the injection of living cells are in clinical use and preclinical development for diseases ranging from cancer to cardiovascular disease to diabetes. To enhance the function of therapeutic cells, a variety of chemical and materials science strategies are being developed that engineer the surface of therapeutic cells with new molecules, artificial receptors, and multifunctional nanomaterials, synthetically endowing donor cells with new properties and functions. These approaches offer a powerful complement to traditional genetic engineering strategies for enhancing the function of living cells.Massachusetts Institute of Technology. Center for Materials Science and Engineering (National Science Foundation (U.S.) DMR-0819762)United States. Dept. of Defense. Prostate Cancer Research Program (W81XWH-10-1-0290)National Institutes of Health (U.S.) (CA140476)National Institutes of Health (U.S.) (EB012352

    Induction of potent anti-tumor responses while eliminating systemic side effects via liposome-anchored combinatorial immunotherapy

    Get PDF
    Immunostimulatory therapies that activate immune response pathways are of great interest for overcoming the immunosuppression present in advanced tumors. Agonistic anti-CD40 antibodies and CpG oligonucleotides have previously demonstrated potent, synergistic anti-tumor effects, but their clinical use even as monotherapies is hampered by dose-limiting inflammatory toxicity provoked upon systemic exposure. We hypothesized that by anchoring immuno-agonist compounds to lipid nanoparticles we could retain the bioactivity of therapeutics in the local tumor tissue and tumor-draining lymph node, but limit systemic exposure to these potent molecules. We prepared PEGylated liposomes bearing surface-conjugated anti-CD40 and CpG and assessed their therapeutic efficacy and systemic toxicity compared to soluble versions of the same immuno-agonists, injected intratumorally in the B16F10 murine model of melanoma. Anti-CD40/CpG-liposomes significantly inhibited tumor growth and induced a survival benefit similar to locally injected soluble anti-CD40 + CpG. Biodistribution analyses following local delivery showed that the liposomal carriers successfully sequestered anti-CD40 and CpG in vivo, reducing leakage into systemic circulation while allowing draining to the tumor-proximal lymph node. Contrary to locally-administered soluble immunotherapy, anti-CD40/CpG-liposomes did not elicit significant increases in serum levels of ALT enzyme, systemic inflammatory cytokines, or overall weight loss, confirming that off-target inflammatory effects had been minimized. The development of a delivery strategy capable of inducing robust anti-tumor responses concurrent with minimal systemic side effects is crucial for the continued progress of potent immunotherapies toward widespread clinical translation.Dana-Farber/Harvard Cancer Center (MIT Bridge Project Fund

    Delivering safer immunotherapies for cancer

    Get PDF
    Cancer immunotherapy is now a powerful clinical reality, with a steady progression of new drug approvals and a massive pipeline of additional treatments in clinical and preclinical development. However, modulation of the immune system can be a double-edged sword: Drugs that activate immune effectors are prone to serious non-specific systemic inflammation and autoimmune side effects. Drug delivery technologies have an important role to play in harnessing the power of immune therapeutics while avoiding on-target/off-tumor toxicities. Here we review mechanisms of toxicity for clinically-relevant immunotherapeutics, and discuss approaches based in drug delivery technology to enhance the safety and potency of these treatments. These include strategies to merge drug delivery with adoptive cellular therapies, targeting immunotherapies to tumors or select immune cells, and localizing therapeutics intratumorally. Rational design employing lessons learned from the drug delivery and nanomedicine fields has the potential to facilitate immunotherapy reaching its full potential

    Modular injectable matrices based on alginate solution/microsphere mixtures that gel in situ and co-deliver immunomodulatory factors

    Get PDF
    Biocompatible polymer solutions that can crosslink in situ following injection to form stable hydrogels are of interest as depots for sustained delivery of therapeutic factors or cells, and as scaffolds for regenerative medicine. Here, injectable self-gelling alginate formulations obtained by mixing alginate microspheres (as calcium reservoirs) with soluble alginate solutions were characterized for potential use in immunotherapy. Rapid redistribution of calcium ions from microspheres into the surrounding alginate solution led to crosslinking and formation of stable hydrogels. The mechanical properties of the resulting gels correlated with the concentration of calcium-reservoir microspheres added to the solution. Soluble factors such as the cytokine interleukin-2 were readily incorporated into self-gelling alginate matrices by simply mixing them with the formulation prior to gelation. Using alginate microspheres as modular components, strategies for binding immunostimulatory CpG oligonucleotides onto the surface of microspheres were also demonstrated. When injected subcutaneously in the flanks of mice, self-gelling alginate formed soft macroporous gels supporting cellular infiltration and allowing ready access to microspheres carrying therapeutic factors embedded in the matrix. This in situ gelling formulation may thus be useful for stimulating immune cells at desired locales, such as solid tumors or infection sites, as well as for other soft tissue regeneration applications.United States. Defense Advanced Research Projects Agency (Contract W81XWH-04-C-0139)National Institutes of Health (U.S.) (EB007280-02)National Science Foundation (U.S.) (Award 0348259

    Engineering synthetic vaccines using cues from natural immunity

    Get PDF
    Vaccines aim to protect against or treat diseases through manipulation of the immune response, promoting either immunity or tolerance. In the former case, vaccines generate antibodies and T cells poised to protect against future pathogen encounter or attack diseased cells such as tumours; in the latter case, which is far less developed, vaccines block pathogenic autoreactive T cells and autoantibodies that target self tissue. Enormous challenges remain, however, as a consequence of our incomplete understanding of human immunity. A rapidly growing field of research is the design of vaccines based on synthetic materials to target organs, tissues, cells or intracellular compartments; to co-deliver immunomodulatory signals that control the quality of the immune response; or to act directly as immune regulators. There exists great potential for well-defined materials to further our understanding of immunity. Here we describe recent advances in the design of synthetic materials to direct immune responses, highlighting successes and challenges in prophylactic, therapeutic and tolerance-inducing vaccines.United States. Dept. of Defense (contract W911NF-13-D-0001)United States. Dept. of Defense (contract W911NF-07-D-0004)National Institutes of Health (U.S.) (AI095109)Bill & Melinda Gates FoundationRagon Institute of MGH, MIT, and HarvardNational Institutes of Health (U.S.) (AI091693)Howard Hughes Medical Institute (Investigator)Carigest S

    Design of lipid nanoparticle delivery agents for multivalent display of recombinant Env trimers in HIV vaccination

    Get PDF
    Background: Immunization strategies that elicit antibodies capable of neutralizing diverse strains of the virus will likely be an important part of a successful vaccine against HIV. The envelope trimer is the only neutralizing target on the virus, and strategies to promote durable, high avidity antibody responses against the native intact trimer structure are lacking. We recently developed chemically-crosslinked lipid nanocapsules as carriers of molecular adjuvants and encapsulated or surface-displayed antigens, which promote follicular helper T-cell responses and elicited high-avidity, durable antibody responses to a candidate malaria antigen (Moon et al. Nat. Mater. 10 243 (2011); Moon et al. PNAS 109 1080 (2012)). Methods: To apply this system to the delivery of HIV antigens, we developed a strategy to anchor recombinant envelope trimers to the surfaces of these particles under conditions preserving the antigenic integrity of the trimers, allowing multivalent display of these immunogens for immunization. To anchor trimers in their native orientation, gp140 trimers with terminal his-tags were anchored to the surface of lipid nanocapsules via Ni-NTA-functionalized lipids. Results: Owing to their significant size (409 kDa) and heavy glycosylation, we found that liquid-ordered and/or gel-phase lipid compositions were required to stably anchor trimers to particle membranes. Trimer-loaded nanocapsules carrying monophosphoryl lipid A elicited durable antibody responses with titers comparable to a Complete Freund’s Adjuvant (CFA)-like emulsion in mice, without the toxic inflammation associated with the latter adjuvant. Further, nanocapsules elicited strong helper T-cell responses associated with a steadily increasing avidity of trimer-binding antibody over 90 days, which was not replicated by other adjuvants. Conclusion: These results suggest that nanoparticles displaying HIV trimers in an oriented, multivalent presentation can promote key aspects of the humoral response against Env immunogens.National Institutes of Health (U.S.) (AI095109)Massachusetts Institute of Technology. Ragon Institute of MGH, MIT, and Harvar

    Antigen Delivery by Lipid-Enveloped PLGA Microparticle Vaccines Mediated by in Situ Vesicle Shedding

    Get PDF
    Lipid-coated poly(lactide-co-glycolide) microparticles (LCMPs) consist of a solid polymer core wrapped by a surface lipid bilayer. Previous studies demonstrated that immunization with LCMPs surface-decorated with nanograms of antigen elicit potent humoral immune responses in mice. However, the mechanism of action for these vaccines remained unclear, as LCMPs are too large to drain efficiently to lymph nodes from the vaccination site. Here, we characterized the stability of the lipid envelope of LCMPs and discovered that in the presence of serum the lipid coating of the particles spontaneously delaminates, shedding antigen-displaying vesicles. Lipid delamination generated 180 nm liposomes in a temperature- and lipid/serum-dependent manner. Vesicle shedding was restricted by inclusion of high-T[subscript M] lipids or cholesterol in the LCMP coating. Administration of LCMPs bearing stabilized lipid envelopes generated weaker antibody responses than those of shedding-competent LCMPs, suggesting that in situ release of antigen-loaded vesicles plays a key role in the remarkable potency of LCMPs as vaccine adjuvants.National Institutes of Health (U.S.) (AI091693)Bill & Melinda Gates FoundationRagon Institute of MGH, MIT and Harvar

    Biomaterial Strategies for Immunomodulation

    Get PDF
    Strategies to enhance, suppress, or qualitatively shape the immune response are of importance for diverse biomedical applications, such as the development of new vaccines, treatments for autoimmune diseases and allergies, strategies for regenerative medicine, and immunotherapies for cancer. However, the intricate cellular and molecular signals regulating the immune system are major hurdles to predictably manipulating the immune response and developing safe and effective therapies. To meet this challenge, biomaterials are being developed that control how, where, and when immune cells are stimulated in vivo, and that can finely control their differentiation in vitro. We review recent advances in the field of biomaterials for immunomodulation, focusing particularly on designing biomaterials to provide controlled immunostimulation, targeting drugs and vaccines to lymphoid organs, and serving as scaffolds to organize immune cells and emulate lymphoid tissues. These ongoing efforts highlight the many ways in which biomaterials can be brought to bear to engineer the immune system.Bill & Melinda Gates FoundationUnited States. Army Research Office. Institute for Soldier Nanotechnologies (Contract W911NF-13-D-0001)Ragon Institute of MGH, MIT and HarvardCancer Research Institute (New York, N.Y.) (Irvington Postdoctoral Fellowship)National Institutes of Health (U.S.) (Awards AI104715, CA172164, CA174795, and AI095109
    • …
    corecore